Math 2339: Quiz 15 - Triple integrals

(1) [5 pts]
Set up but do not evaluate the integral of the function \(f(x, y, z) = xy \) over the volume \(E \) bound by the curves \(y = x^3 \), \(y = x \), the plane \(z = 0 \) and \(z = x + 2y \).

\[
\iiint_E \, xy \, dV
\]

(2) [5 pts]
Find the volume of the solid between the surfaces \(z = 4 - x^2 \) and \(z = 0 \), and between the planes \(y = 1 \) and \(y = 3 \).

\[
V = \int_{-2}^{2} \int_{1}^{3} \int_{0}^{4-x^2} \, dz \, dy \, dx
\]

\[
= \int_{-2}^{2} \left(4 - x^2 - 1 \right) \, dx
\]

\[
= \int_{-2}^{2} \left(3 - x^2 \right) \, dx
\]

\[
= \left[3x - \frac{x^3}{3} \right]_{-2}^{2}
\]

\[
= 2 \left(4 - \frac{8}{3} \right) - 2 \left(-8 + \frac{8}{3} \right) = 4 \left(8 - \frac{8}{3} \right) = \frac{64}{3}
\]