3.2 The Calculus of Inverse Functions

3.3 Derivatives of Logarithmic & Exponential Functions

1. Theorem: If \(f \) is a one-to-one differentiable function with inverse function \(f^{-1} \) and \(f'(f^{-1}(x)) \neq 0 \), then the inverse function is differentiable at \(a \) and

\[
(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}
\]

Replacing \(a \) by the general number \(x \), we have

\[
(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}
\]

If we write \(y = f^{-1}(x) \), then \(x = f(y) \)

\[
(f^{-1})'(x) = \frac{dy}{dx}
\]

\[
f'(f^{-1}(x)) = f'(y) = \frac{dx}{dy}
\]

\[
\frac{dy}{dx} = \frac{1}{(\frac{dx}{dy})}
\]

Or:

\[
y = f^{-1}(x) \iff x = f(y)
\]

\[
\frac{d}{dx} x = \frac{d}{dx} f(y) \Rightarrow 1 = \frac{df(y)}{dy} \cdot \frac{dy}{dx} \Rightarrow f'(y) \frac{dy}{dx} = 1
\]

\[
\Rightarrow \frac{dy}{dx} = \frac{1}{f'(y)} = \left(\frac{dx}{dy}\right)
\]

2. Examples:
\[(f^{-1})'(a) = \tan \phi = \tan \left(\frac{\pi}{2} - \theta \right) = \cot \theta = \frac{1}{\tan \theta} = \frac{1}{f'(b)} \Rightarrow (f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))} \]

\[f(x) = 2x + \cos x \quad (f^{-1})'(1) = ?
\]

- \[f(0) = 1 \Rightarrow f^{-1}(1) = 0 \]

Thus:
\[(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{2 - \sin \alpha} = \frac{1}{2} \]

- \[y = f(x) = 2x + \cos x \]
- \[1 = f(0) \]

Inverse: \[\alpha = f^{-1}(y) \]

\[(f^{-1})'(1) = \frac{dy}{dx} \bigg|_{y=1} = \frac{dy}{dx} \bigg|_{x=0} = \frac{1}{2 - \sin \alpha} = \frac{1}{2} \]

3. **Natural logarithms and derivatives of logarithmic functions**

- **Natural logarithm:** logarithm with base e

\[\log_e x = \ln x \]

\[\ln x = y \quad \Rightarrow \quad e^y = x \]

\[\ln(e^x) = x, \quad x \in \mathbb{R} \]

\[e^{\ln x} = x, \quad x > 0 \]

\[\ln e = 1 \]
Eg:

\[\sqrt{\ln x} = 5, \quad x = ? \]

\[\ln x (\log_e x) = 5 \implies x = e^5 \]

\[\sqrt{e^{5-3x}} = 10 \]

\[\ln e^{5-3x} = \ln 10 \implies 5-3x = \ln 10 \implies x = \frac{5 - \ln 10}{3} \]

Change of base formula:

\[\log_a x = \frac{\ln x}{\ln a} \quad (a \neq 1, \quad a > 0) \]

Proof:

Let \(y = \log_a x \implies x = a^y \implies \ln x = \ln a^y = y \ln a \]

\[\Rightarrow y = \frac{\ln x}{\ln a} \quad \text{ie} \quad \log_a x = \frac{\ln x}{\ln a} \]

(True \(\log_a x = \frac{\log_b x}{\log_b a}, \quad b > 0, \quad b \neq 1 \))

\[f(x) = \log_a x \implies f'(x) = \frac{1}{x} \log_a e \]

Proof:

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\log_a (x+h) - \log_a x}{h} \]

\[= \lim_{h \to 0} \frac{\log_a \left(\frac{x+h}{x} \right)}{h} = \lim_{h \to 0} \left[\frac{1}{h} \log_a \left(1 + \frac{1}{x} \right) \right] \cdot \frac{1}{x} \]

\[= \frac{1}{x} \log_a \left(1 + \frac{1}{x} \right) = \frac{1}{x} \log_a e \]

\[\log_a e = \frac{\ln e}{\ln a} = \frac{1}{\ln a} \implies (\log_a x)' = \frac{1}{x \ln a} \]

\[(\ln x)' = \frac{1}{x} \cdot \frac{1}{\ln e} = \frac{1}{x} \implies (\ln x)' = \frac{1}{x} \]