4.2 The Mean Value Theorem

Rolle's Theorem

If function \(f \): \[
\begin{align*}
1. \text{ continuous on } [a, b] \\
2. \text{ differentiable on } (a, b) \\
3. f(a) = f(b)
\end{align*}
\]
Then there is a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \)

9. Prove that the equation \(x^2 + x - 1 = 0 \) has exactly one real root.

Solution:
1st show that a root exist by using the Intermediate Theorem.
Let \(f(x) = x^2 + x - 1 \)
Then \(f(0) = -1 < 0 \) \(\quad \) \(f(1) = 1 > 0 \) \(\quad \) i.e. \(f(0) < 0 < f(1) \)
Since \(f \) is a polynomial, it is continuous, so there is a number between 0 and 1 such that \(f(c) = 0 \) \(\quad \) i.e. \(f(c) = 0 \)

2nd show the equation has no other real root by using Rolle's Theorem (argue by contradiction).
Suppose that it had two roots \(a \) and \(b \) \(\quad \) then \(f(a) = f(b) = 0 \)
Since \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\) \(\quad \) thus by Rolle's Theorem, there is a number \(c \) between \(a \) and \(b \) such that \(f'(c) = 0 \)
But \(f'(x) = 2x + 1 \) for all \(x \), \(f'(x) \) never 0.
This gives a contradiction. Therefore, the equation can't have two real roots, and it can't have more than one root.

The Mean Value Theorem

- f is continuous on [a, b]
- f is differentiable on (a, b)

Then there is a number c in (a, b) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

or, equivalently

\[f(b) - f(a) = f'(c)(b - a) \]

9. Suppose that \(f(0) = -3 \) and \(f'(x) \leq 5 \) for all \(x \). How large can \(f(2) \) possibly be?

Solution: We are given that \(f \) is differentiable (and therefore continuous) everywhere. We can apply the Mean Value Theorem on \([0, 2]\). There is a \(c \) such that

\[f(2) - f(0) = f'(c)(2 - 0) \]

\[\Rightarrow f(2) = f(0) + 2f'(c) = -3 + 2f'(c) \]

\[f'(x) \leq 5 \text{ for all } x, \text{ so } f'(c) \leq 5 \Rightarrow 2f'(c) \leq 10 \]

Thus

\[f(2) = -3 + 2f'(c) \leq -3 + 10 = 7 \]

That is, the largest possible value for \(f(2) \) is 7.
Theorem

If $f'(c) = 0$ for all x in (a, b), then f is constant on (a, b).

Corollary

If $f'(x) = g'(x)$ for all x in (a, b), then $f - g$ is constant on (a, b), that is $f(x) = g(x) + C$ where C is constant.

4.7 Antiderivatives

Definition

A function F is called an antiderivative of f on an interval I if $F'(x) = f(x)$ for all x in I.

For instance:

- Let $F(x) = \frac{1}{2} x^3$,

Let $H(x) = \frac{1}{3} x^3 + C$ (where C is constant).

Theorem

If F is an antiderivative of f on an interval I, then the general antiderivative of f on I is $F(x) + C$ where C is an arbitrary constant.

By (a) $f(x) = \sin x.$

- $F'(x) = f(x)$

$F(x) = -\cos x + C$.

(b) $f(x) = \sqrt{x}$.

$F(x) = \ln |x| + C$.

(c) $f(x) = x^n$.

$F(x) = \frac{1}{n+1} x^{n+1} + C$.