Question 1 (6 points) Consider the following statement, state whether it is true or not, and explain why it is true or not. For full marks, show your calculations, be precise and concise, use a graph.

Statement: You have the following information on the net present value of a project called Project A:

\[\text{NPV}_A > 0 \text{ for cost of capital } k < 12\% \]
\[\text{NPV}_A < 0 \text{ for cost of capital } k > 12\% \]

Your firm is 100% internally equity financed and you use CAPM to calculate your cost of internal equity. The risk-free rate of return is 2% and \(r_M = 6\% \). Then for IRR method to accept this project, your company beta should be less than 2.5.

\[\text{IRR}_A = 12\% \]

\[\text{IRR} \text{ accepts if } \]

\[\text{IRR}_A = 12\% > r_F + \beta_s (r_M - r_F) \]

\[\Rightarrow 12\% > 2\% + \beta_s (6\% - 2\%) \]

\[\beta_s < 2.5 \]

Statement is False
Question 2 (6 points) Consider the following statement, state whether it is true or not, and explain why it is true or not. For full marks, be precise and concise and use a graph.

Statement: You are evaluating two projects A and B. You can only choose one of the two projects, but not both. You have the following information on the IRRs and NPV schedules of the two projects

\[IRR_A = 10\% \text{ and } IRR_B = 8\% \]

\[NPV_A > NPV_B \text{ for all } k < 12\% \]
\[NPV_A < NPV_B \text{ for all } k > 12\% \]

Then in this situation both NPV and IRR methods always yield the same decision.

<table>
<thead>
<tr>
<th>k</th>
<th>NPV</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td><8%</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>8%</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>10%</td>
<td>Reject both</td>
<td>Reject both</td>
</tr>
<tr>
<td>12%</td>
<td>Reject both</td>
<td>Reject both</td>
</tr>
</tbody>
</table>

Yes both NPV and IRR always yield the same decision.

Statement is True.
Question 3 (6 points) Consider the following statement, state whether it is true or not, and explain why it is true or not. For full marks, be precise and concise.

Statement: A company can avoid issuing external equity by reducing its capital budget and/or by reducing its dividend payout ratio.

True since internal equity requires

\[I (1-x) > w_e B. \]

Reduces B makes right hand side smaller and it becomes easier to satisfy above requirement.

Similarly reduces x makes left hand side bigger again making it easy to satisfy above requirement.
Question 4 (6 points) Consider the following statement, state whether it is true or not, and explain why it is true or not. For full marks, show your calculation, be precise and use a graph.

Statement: You are evaluating two projects A and B. You can only choose one of the two projects, but not both. Let \(k \) denote your cost of capital. You have the following information on the NPVs of the two projects:

\[
NPV_A > NPV_B \text{ for all } k < 8% \\
NPV_A < NPV_B \text{ for all } k > 8%
\]

You also know that \(IRR_A = 10\% \) and that both projects have the same initial cost. One can then conclude that Project A has a shorter payback, that is, it recovers its initial cost earlier than Project B.

Project A has a steeper NPV schedule indicating its larger cash flows in late years. Hence B must have a shorter payback.

Statement is False.
Question 5 (6 points) Consider the following statement, state whether it is true or not, and explain why it is true or not. For full marks, be precise.

Statement: Suppose you are evaluating a two year project. Suppose, in contrast to your initial expectations, the initial cost to undertake the project increases. Then both the IRR and MIRR of this project will decrease.

IRR is defined as

\[\text{NPV at } IRR = 0. \]

As initial cost increases IRR decreases.

MIRR is defined as

\[
(1 + MIRR)^2 = \frac{\text{Future Value}}{\text{Initial Cost}}
\]

As initial cost increases MIRR decreases

Statement is True.
Question 6 (25 points): A company finances its operations with 40 percent debt and 60 percent equity. Its net income is \(I = \$24 \) million and it has a dividend payout ratio of \(x = 25\% \). Its capital budget is \(B = \$25 \) million this year. The interest rate on company's debt is \(r_d = 10\% \) and the company's tax rate is \(T = 40\% \). The company's common stock trades at \(P_0 = \$66 \) per share, and its next dividend of \(D_1 = \$6.6 \) per share is expected to grow at a constant rate of \(g = 10\% \) a year. The flotation cost of external equity is \(F = 5\% \) of the dollar amount issued.

a) (15 points) What is the company's WACC?

\[
\begin{align*}
\omega_e B &= 0.60 \times 25 = 15M \\
I(1-x) &= 24 \times (1-0.25) = 18M \\
\text{Since } I(1-x) > \omega_e B &\implies \text{internal equity} \\
\text{Cost of internal equity} &= \frac{D_1}{P_0} + g = \frac{6.6}{66} + 10\% = 20\%
\end{align*}
\]

\[
\begin{align*}
\text{WACC} &= \omega_d r_d (1-T) + \omega_e \text{re} + F \\
\text{WACC} &= 0.40 \times 0.10 \times (1-0.4) + 0.6 \times 0.20 \\
&= 2.4\% + 12\% \\
\text{WACC} &= 14.4\%
\end{align*}
\]
b) (10 points) What is the highest dividend payout ratio x that the company can implement if the company wants to expand its capital budget to $B = $32 million without issuing new stock?

\[I(1-x) > w_c B \]

\[24M(1-x) > 0.6 (32M) \]

\[(1-x) > \frac{0.6 (32M)}{24M} \]

\[x < 20\% \]
Question 7 (20 points): (IRR) Consider a company which uses only debt (bonds) to finance its capital budget. The company is considering a 10 year project which requires a date 0 outlay of $67,100 and generates $10,000 in each of the following 10 years. The company is subject to a tax rate of $T=20\%$. What is the highest yield r_d annual on the company’s bonds that would allow to undertake the project according to the IRR method?

To find IRR, note that

$$\text{NPV at } IRR = 0$$

$$-67,100 + (10,000)(PVIFA)_{0,IRR} = 0$$

$$(PVIFA)_{10,IRR} = 6.71$$

$$IRR = 8\%$$

We need

$$IRR > r_d (1-T)$$

$$8\% > r_d (1-0.20)$$

$$\Rightarrow r_d < 10\%$$
Question 8 (25 points) (Modified IRR): Your firm is 100% debt financed and the yield on your bonds is given by \(r_d = 10\% \). Your firm is subject to a tax rate of 30%. Suppose you are evaluating a two year project using the MIRR criteria. The project will generate a fixed positive cash flow \(x \) for both of the next two years. The initial cost of the project is $50,000. What is the minimum positive annual cash flow \(x \) such that the MIRR criteria recommends accepting the project?

\[
\text{Cost of Capital} = r_d (1 - T) = 10\% (1 - 0.3) = 7\%
\]

\[
\text{Future Value} = x \times (PVA_{2,7\%}) = (2.07)x
\]

\[
\text{MIRR} = \sqrt[2]{\frac{\text{Future Value}}{\text{Initial Cost}}} - 1 \geq \frac{0.07}{\text{Cost of capital}}
\]

\[
\Rightarrow \quad \frac{(2.07)x}{50,000} \geq (1.07)^2.
\]

\[
x \geq \frac{(1.07)^2 \times 50,000}{2.07}.
\]

\[
x \geq 27,654
\]
Question 1 (25 points): A company with a stock price $P_0 = $108 had a constant dividend growth rate last estimated to be $g = 8\%$. Suppose now that the market updates its beliefs on the constant dividend growth rate, and it is now estimated to be $g^{\text{new}} = 4\%$. After this new estimate, the stock price went down to $P_0^{\text{new}} = $52. The required rate of return on the market portfolio is $r_m = 6\%$ and the risk-free rate is 2% and did not change. The company's beta also remained the same.

a) (15 points) What is the last dividend D_0 of the company?

\[
D_0 \left(\frac{1.08}{108} \right) + 0.08 = D_0 \left(\frac{1.04}{52} \right) + 0.04
\]

\[
(0.01)D_0 + 0.08 = (0.02)D_0 + 0.04
\]

\[
0.04 = (0.01)D_0
\]

\[
D_0 = 4
\]
b) (10 points) What is the beta of the company?

\[12\% = 2\% + \beta_5 (6\% - 2\%) \]

\[\beta_5 = 2.5 \]

Note that with \(D_0 = \$4 \),
we have \(r_s = 0.02 (4) + 0.04 = 12\% \)

Hence

\[12\% = r_{FP} + \beta_5 (r_m - r_{FP}) \]

\[12\% = 2\% + \beta_5 (6\% - 2\%) \]

\[\beta_5 = 2.5 \]
Question 3 (25 points): A company recently paid a dividend of $1.00 per share ($D_0 = $1). The company has a constant dividend growth rate of $g = 8\%$ and a beta equal to 2. The required rate of return on the market is $r_M = 8\%$ and the risk-free rate is $r_{RF} = 2\%$.

a) (10 points) What should be the company’s stock price according to the constant dividend growth rate model?

\[\frac{1.08}{0.14 - 0.08} = \frac{1.08}{0.06} \]

\[p_0 = 18 \]

Note that \(r_S = 2\% + 2(8\% - 2\%) = 14\% \)

\[\Rightarrow p_0 = \frac{D_0 (1+g)}{r_S - g} = \frac{1 (1+0.08)}{0.14 - 0.08} \]

\[\Rightarrow p_0 = \frac{1.08}{0.06} \Rightarrow p_0 = 18 \]
b) (15 points) The company is considering a change of policy which will reduce its g to 5%. If market conditions remain unchanged, what new beta will cause the stock price of the company to remain unchanged?

\[r_s^{\text{new}} = \frac{1.05}{18} + 0.05 \]

\[r_s^{\text{new}} = 10.83\% \]

\[10.83\% = 2\% + \beta (6\%) \]

\[\beta = \frac{8.83\%}{6\%} = 1.47 \]
Question 3 (13 points): A company recently paid a dividend of $2 per share ($D_0 = $2). The company had a constant dividend growth rate last estimated to be $g = 3\%$. Suppose now that the market updates its beliefs on the constant dividend growth rate, and it is now estimated to be $g_{\text{new}} = 4\%$. After this new estimate, the stock price be $P^\text{new}_0 = $52. The required rate of return on the market portfolio is $r_m = 6\%$ and the risk-free rate is 2% and did not change. The company's beta also remained the same. What was the price P_0 before the change in g?

\[\frac{2(1.03)}{P_0} + 0.03 = \frac{2(1.04)}{52} + 4\% \]

\[\frac{2.06}{P_0} + 0.03 = 0.08 \]

\[P_0 = \frac{2.06}{0.05} \]

\[P_0 = 41.2 \]
Question 4 (13 points): Suppose a company conducts a study to evaluate the benefits and costs of selling off their secondary business.

In particular, if they keep their secondary business, they will have $\beta_s^{\text{current}} = 1.6$ and $g = 8\%$.

If they sell it off, they will have a new beta given by β_s^{new} and $g^{\text{new}} = 6\%$.

The last dividend of the company was $D_0 = $1.

Assume that $r_M = 8\%$ and risk free rate is $r_{RF} = 4\%$.

If the company is trying to maximize its current stock price, what is the highest value of β_s^{new} such that the company is better off selling the secondary business.

\[r_s^{\text{without sell off}} = 4\% + 1.6 \times (4\%) = 10.4\% \]

\[p_0^{\text{current}} = \frac{1.08}{0.104 - 0.08} = \frac{1.08}{0.024} = 45 \]

\[p_s^{\text{new}} = \frac{1.06}{r_s^{\text{new}} - 0.06} > 45 \]

\[r_s^{\text{new}} \leq 8.3\% \]

\[4\% + \beta_s^{\text{new}} (4\%) \leq 8.3\% \]

\[\beta_s^{\text{new}} < \frac{4.3\%}{4\%} \Rightarrow \beta_s^{\text{new}} = 1.075 \]
True False Questions (3 points each, 24 points total)

- Suppose the stock’s beta increases. The risk free rate \(r_{RF} \) and return on market portfolio \(r_M \) both remain the same, and the dividend growth rate \(g \) goes UP. Then dividend return on the stock must go down.

 \[\text{False} \]

- Suppose, the company beta increases, the risk free rate and return on market portfolio remain the same. For the stock price to remain constant, the dividend growth rate estimate \(g \) must go down.

 \[\text{False} \]

- Suppose the required return \(r_M \) on the market portfolio increases, the dividend growth rate estimate \(g \) goes up, and company beta remains constant. This implies that the dividend return on the stock must DECREASE?

 \[\text{False} \]

- If the market lowers its estimate of a company’s beta, increases its dividend growth estimate \(g \) and all else constant, this means dividend return must increase.

 \[\text{False} \]

- If the capital gains return on a stock goes up and all else is the same and then this means the stock price also goes up.

 \[\text{True} \]

- Suppose the company beta, risk free rate and return on market portfolio remain the same, and the dividend growth rate \(g \) goes down. This implies that the dividend yield on the stock must increase.

 \[\text{True} \]
• Suppose the company beta increases, the risk free rate and return on market portfolio remain the same. For the stock price to remain constant, the capital gains return must increase.

\[\text{True} \]

• Suppose the required return \(r_M \) on the market portfolio increases, the dividend growth rate estimate \(g \) goes down, and company beta remains constant. This implies that the dividend yield on the stock must increase.

\[\text{True} \]

\[r_f \leq r_g \]
True or False Questions (3 points each)

For the next 4 True False Questions below, consider a 20 year bond with annual coupon rate of 12% and coupons are paid semiannually. Assume that $r_d \text{ annual} = 10\%$.

- The current value of this bond will be less than the par value of $1000
 \[\text{FALSE} \]

- If the $r_d \text{ annual}$ remains at 10% after 6 months, the value of this bond will INCREASE
 \[\text{FALSE} \]

- If the $r_d \text{ annual}$ remains at 10% after 6 months, the 6 month coupon return on this bond will be higher than 6%
 \[\text{TRUE} \]

- The duration of this bond will be shorter than the duration of a 20 year bond with 10% annual coupon rate.
 \[\text{TRUE} \]
For the next 4 True False questions below, consider a 10 year bond with annual coupon rate of 10% and coupons are paid semiannually. Assume that \(r_d \) annual = 10%.

- The current value of this bond will be less than the par value of $1000
 FALSE

- If the \(r_d \) annual remains at 10% after 6 months, the value of this bond will DECREASE
 FALSE

- If the \(r_d \) annual remains at 10% during the next 24 months, the 6 month coupon return on this bond will remain below 5% and increase over the course of the next 24 months.
 FALSE

- The duration of this bond will be shorter than the duration of a 10 year bond with 8% annual coupon rate
 TRUE
For the next 2 True False questions below, consider

(i) Bond A: 20 year bond with annual coupon rate of 10%
(ii) Bond B: 10 year bond with annual coupon rate of 10%
(iii) Bond C: 20 year bond with annual coupon rate of 8%

- Bond A will decline the least in value if interest rates go up.
 \textcolor{red}{\text{FALSE}}

- Bond C will gain the most in value if interest rates go down.
 \textcolor{green}{\text{TRUE}}