Introduction

- Approach based on abstract models, as opposed to focusing on institutional details.

- Models are simplifications, therefore they focus on relevant features for the problem at hand, abstracting from other, less important, ones.

- Build and use simple overlapping generations models of money to answer such basic questions in monetary economics as:
 - How does money promote exchange?
 - What should serve as money
 - What causes inflation?
 - What is the cost of inflation?
Demanding money

- We will develop a simple model of money, designed to answer the most basic question in monetary economics: why do people hold money?

- Intrinsically worthless pieces of paper can have value by providing a means to acquire goods one does not possess. Because of this, the introduction of money improves welfare.

- What distinguishes the demand for money from the demand for other goods? People do not consume money, they use it as a medium of exchange.
Overlapping generations

- Modeling this distinction requires two features:
 1. It must be hard to directly exchange goods in the absence of money.
 2. Someone must be willing to hold money from one period to the next.

- To model these facts we will use an overlapping generations model:
 - people live for two periods.
 - In the first period they are young, in the second, old.
The basic model

- The economy begins in period 1.

- In each period $t \geq 1$, N_t individuals are born. We call these people the future generations.

- In period 1 there are N_0 people already alive. We call them the initial old.

- Each individual receives an endowment, y, of the consumption good when young, and nothing when old.
Preferences

Individual’s draw utility (satisfaction) from consuming the economy’s sole commodity when young and old.

Assumptions about preferences:

1. Individuals are able to rank any combinations of consumption today and tomorrow \((c_{1,t}, c_{2,t+1})\).

2. Utility is increasing in consumption in both periods.

3. Individuals like to consume in both periods of life.

4. Individuals value consumption in a period more if its relatively scarce.
Indifference curves

- To portray an individual’s preferences graphically, we use the concept of an **indifference curve**.

- This curve exhibits a **diminishing marginal rate of substitution** (assumption 4 above).

- A group of indifference curves is called an **indifference map**.

- Individual preferences are transitive, meaning that indifference curves **cannot cross**.

- The initial old only care about their consumption when old (the more the better).

- Future generations want to acquire goods that they do not have. They have goods when young, but not when old.
Feasibility constraint

- Suppose our job is to allocate available goods among young and old.
- In every period t, we cannot allocate more than the total goods available in the economy: N_{ty}.
- Suppose every member of generation t is given the same lifetime allocation $(c_{1,t}, c_{2,t+1})$.
- This means total young consumption is $N_t c_{1,t}$, while total old consumption is $N_{t-1} c_{2,t}$.
- Our feasibility constraint as central planners is:

\[N_t c_{1,t} + N_{t-1} c_{2,t} \leq N_{ty}. \]
Stationarity

- If the number of people born in each period is constant \(N_t = N \) for all \(t \), this becomes:

 \[c_{1,t} + c_{2,t} \leq y. \]

- For now we will be concerned with **stationary allocations**, where \(c_{1,t} = c_1 \) and \(c_{2,t} = c_2 \) for all \(t \). Note that this does not mean \(c_1 = c_2 \).

- The **feasibility constraint** becomes:

 \[c_1 + c_2 \leq y. \]

- The **feasible set** is the set of allocations that obey the above inequality, all the possible allocations.
An indifference curve
An indifference map

[Diagram showing indifference curves labeled U^0, U^1, and U^2 with points A, B, and C, and a direction of increasing utility indicated.]
Indifference curves cannot cross
Feasibility constraint