1. See Matlab script and graphs LUerr.pdf and LUsolerr.pdf. For the experiments we see that the LU factorization is stable in that \(\|LU - A\| \leq \varepsilon m \|A\| \). The solutions, too, were generally quite accurate, though a few showed the loss of some digits due to conditioning.

2. See hw2p2sol.txt. In this case the factorization is unstable as \(\|LU - A\| \approx 0.07 \|A\| \). As a result the solution is not very accurate. To understand the instability, let's replace \(-.99999\) by \(-1\) below the main diagonal. (I made it \(-.99999\) to make sure there were no ties in determining the pivot.) Then it is easy to carry out the elimination process to find \(U\):

\[
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
\end{pmatrix}
\]

(Add row 1 to rows 2 \(\cdots \) \(n\))

(Add row 3 to rows 3 \(\cdots \) \(n\))

\[
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
\end{pmatrix}
\]

etc.
Repeating this calculation we find:

\[
U = \begin{pmatrix}
1 & 0 \\
0 & \cdots
\end{pmatrix}
\]

Thus the entries of \(U \) grow exponentially in \(n \) \(\Rightarrow \) factorization is unstable.

3. See hw2p3sol.txt

4. See hw2p4sol.txt

5. Suppose \(A \) is column diagonally dominant. That is:

\[
|a_{ii}| > \sum_{j \neq i} |a_{ij}| \quad \text{for } i=1:n.
\]

In the first step of Gaussian elimination with partial pivoting we choose the pivot from \(\sum |a_{ii}| \). No pivoting is done in step 1.

Given the recursive construction of the elimination algorithm we are done if we prove that the \((n-1) \times (n-1) \) matrix in rows 2:n and columns 2:n is still column diagonally dominant. Define this matrix as \(\hat{A}^{(i)} \), but for simplicity keep the original indices 2:n. Then we explicitly write down formulas for the entries of \(\hat{A}^{(i)} \). Notice we subtract \(\frac{a_{ij}}{a_{ii}} \) from row \(i \).
\[a_{ji}^{(1)} = a_{ji} - \frac{a_{ji} a_{1i}}{a_{11}} \]

Now we check for column diagonal dominance:

\[\sum_{j=2}^{n} |a_{ji}^{(1)}| = \sum_{j=2}^{n} \left| a_{ji} - \frac{a_{ji} a_{1i}}{a_{11}} \right| < |a_{ii}| - |a_{ii}| \]

\[\leq \sum_{j=2}^{n} \left| a_{ji} \right| + \left| a_{1i} \right| - \frac{|a_{ii}||a_{1i}|}{|a_{11}|} \]

\[= \sum_{j=2}^{n} \left| a_{ji} \right| - \frac{|a_{ii}||a_{1i}|}{|a_{11}|} \]

\[< |a_{ii}| - \frac{|a_{ii}||a_{1i}|}{|a_{11}|} \]

\[\leq |a_{ii} - \frac{a_{ii} a_{1i}}{a_{11}}| = |a_{ii}^{(1)}| \]

Thus we've shown:

\[|a_{ii}^{(1)}| > \sum_{j=2}^{n} |a_{ji}^{(1)}| \]

\[\Rightarrow A^{(1)} \text{ is column diagonally dominant.} \]

\[\Rightarrow \text{No pivoting will be done. (See handwritten for illustration)} \]