Least Squares and Nearest Neighbors 11

variable X;. Since all vectors are assumed to be column vectors, the ith
row of X is 2!, the vector transpose of z;.

For the moment we can loosely state the learning task as follows: given
the value of an input vector X, make a good prediction of the output Y,
denoted by ¥ (pronounced “y-hat”). If Y takes values in IR then so should
Y'; likewise for categorical outputs, G should take values in the same set G
associated with G.

For a two-class (5, one approach is to denote the binary coded target
as Y, and then treat it as a quantitative output. The predictions Y will
typically lie in [0, 1], and we can assign to G the class label according to
whether ¢ > 0.5. This approach generalizes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
suppose we have available a set of measurements (z;,v;) or (zi,gi), ¢ =
1,..., N, known as the training data, with which to construct our predic-
tion rule.

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
linear model fit by least squares and the k-nearest-neighbor prediction rule.
The linear model makes huge assumptions about structure and yields stable
but possibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate
but can be unstable.

2.8.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
X = (X1,X2,...,X}p), we predict the output Y via the model

Y :B(} +ZX_§,33;. (2.1)

j=1

The term ,ég is the intercept, also known as the bias in machine learning.
Often it is convenient to include the constant variable 1 in X, include [y in
the vector of coefficients 3, and then write the linear model in vector form
as an inner product

Y =X5p, (2.2)

12 2. Overview of Supervised Learning

where X7 denotes vector or matrix transpose (X being a column vector).
Here we are modeling a single output, so Y is a scalar; in general Y can be
a K —vector, in which case 3 would be a p x K matrix of coefficients. In the
(p + 1)-dimensional input—-output space, (X, Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
and is a subspace; if not, it is an affine set cutting the Y-axis at the point
(0, 30) From now on we assume that the intercept is included in [}

Viewed as a function over the p-dimensional input space, f(X) = XT3
is linear, and the gradient f/(X) = (3 is a vector in input space that points
in the steepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
least squares. In this approach, we pick the coefficients 3 to minimize the
residual sum of squares

N

RSS(B) = > (v — 2] B)*. (2.3)

=1

RSS(3) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

RSS(3) = (y — XB)T(y — XB), (2.4)

where X is an N x p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set. Differentiating w.r.t. 5 we get
the normal equations

X' (y — XB) =0. (2.5)
If X”X is nonsingular, then the unique solution is given by

B =(XTX)"'X"y, (2.6)

and the fitted value at the ith input z; is §; = §(x;) = Lff;’ At an arbi-
trary input zo the prediction is §(zo) = .7;[{{3 The entire fitted surface is
characterized by the p parameters 3. Intuitively, it seems that we do not
need a very large data set to fit such a model.

Let’s look at an example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs X; and
Xo. The data are simulated, and for the present the simulation model is
not important. The output class variable G has the values GREEN or RED,
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for GREEN and 1 for RED. The fitted values Y are

Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response

1.535.. RS R O : %2 Tidie i il 1

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable—GREEN = 0, RED = 1—and then fit by linear regression. The
line is the decision boundary defined by ¥ 3 = 0.5. The red shaded region denotes
thatl part of input space classified as RED, while the green region is classified as
GREEN.

converted to a fitted class variable G according to the rule

A RED i D
Qe Ll 2o (2.7)
GREEN if Y <0.5.

The set of points in IR? classified as RED corresponds to {z : rcT{? > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by
the decision boundary {x : 73 = 0.5}, which is linear in this case. We
see that for these data there are several misclassifications on both sides
of the decision boundary. Perhaps our linear model is too rigid— or are
such errors unavoidable? Remember that these are errors on the training
data itself, and we have not said where the constructed data came from.
Consider the two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

14 2. Overview of Supervised Learning

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative model.
One first generates a discrete variable that determines which of the compo-
nent Gaussians to use, and then generates an observation from the chosen
density. In the case of one Gaussian per class, we will see in Chapter 4 that
a linear decision boundary is the best one can do, and that our estimate is
almost optimal. The region of overlap is inevitable, and future data to be
predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is
not. The optimal decision boundary is nonlinear and disjoint, and as such
will be much more difficult to obtain.

We now look at another classification and regression procedure that is
in some sense at the opposite end of the spectrum to the linear model, and
far better suited to the second scenario.

2.3.2 Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set 7 clos-
est in input space to z to form Y. Specifically, the k-nearest neighbor fit
for Y is defined as follows:

f’(w)=% > v (2.8)

i ENg(z)

where N (z) is the neighborhood of 2 defined by the £ closest points z; in
the training sample. Closeness implies a metric, which for the moment we
assume is Euclidean distance. So, in words, we find the k observations with
z; closest to = in input space, and average their responses.

In Figure 2.2 we use the same training data as in Figure 2.1, and use
15-nearest-neighbor averaging of the binary coded response as the method
of fitting. Thus Y is the proportion of RED’s in the neighborhood, and so
assigning class RED to G if Y > 0.5 amounts to a majority vote in the
neighborhood. The colored regions indicate all those points in input space
classified as CREE!N or RED by such a rule, in this case found by evaluating the
procedure on a fine grid in input space. We see that the decision boundaries
that separate the crzEn from the RED regions are far more irregular, and
respond to local clusters where one class dominates.)

Figure 2.3 shows the results for 1-nearest-neighbor classification: Y is
assigned the value y, of the closest point z; to z in the training data. In
this case the regions of classification can be computed relatively easily, and
correspond to a Voronoi tessellation of the training data. Each point z;

Least Squares and Nearest Neighbors 15

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in lwo dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (GREEN = 0,RED = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

has an associated tile bounding the region for which it is the closest input
point. For all points z in the tile, G () = g;. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is defined in exactly the
same way for regression of a quantitative output Y, although £ = 1 would
be an unlikely choice.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of &k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods

16 2. Overview of Supervised Learning

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification ezample in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (GREEN = 0,RED = 1), and
then predicted by 1-nearest-neighbor classification.

were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

2.3.8 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Least Squares and Nearest Neighbors

k - Number of Nearest Neighbors

17

151 83 45 25 15 9 5 3 1
| 11 L1 1]
P | T (N 1 - I — _.1j
L]
° il I
° -
0 . Linear &
y — ° L]
= = N7 /
e o - ' e - *
\ - & ‘
2 o/a . ee? »
a = ‘ .\. ° °
5 ° \
iy s
— o
w
@ e
w |
@ -1 | o Train |
| = Test
| ' —— Bayes . l
S
o f
| I i] T T I J
2 3 5 a 12 18 29 67 200

Degrees of Freedom - Nk

FIGURE 2.4. Misclassification curves for the simulation ezample used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The red curves are test and the green are training error for
k-nearest-neighbor classification. The results for linear regression are the bigger
green and red dots at three degrees of freedom. The purple line is the optimal
Bayes Error Rate.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means my
from a bivariate Gaussian distribution N((1,0)7,I) and labeled this class
creEy, Similarly, 10 more were drawn from N((0,1)7,I) and labeled class
RED. Then for each class we generated 100 observations as follows: for each
observation, we picked an m; at random with probability 1/10, and then
generated a N(my,1/5), thus leading to a mixture of Gaussian clusters for
each class. Figure 2.4 shows the results of classifying 10,000 new observa-
tions generated from the model. We compare the results for least squares
and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.

18 2. Overview of Supervised Learning

The following list describes some ways in which these simple procedures
have been enhanced:

e Kernel methods use weights that decrease smoothly to zero with dis-
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

e In high-dimensional spaces the distance kernels are modified to em-
phasize some variable more than others.

e Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

e Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

e Projection pursuit and neural network models consist of sums of non-
linearly transformed linear models.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so far. We
first consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X € IR” denote a
real valued random input vector, and ¥ € IR a real valued random out-
put variable, with joint distribution Pr(X,Y’). We seek a function f(X)
for predicting Y given values of the input X. This theory requires a loss
function L(Y, f(X)) for penalizing errors in prediction, and by far the most
common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))>.
This leads us to a criterion for choosing f,

EPE(f) = B(Y - f(X))? (29)
= /(y — f(x))*Pr(dz, dy), (2.10)

the expected (squared) prediction error. By conditioning® on X, we can
write EPE as

EPE(f) = ExEyx ([Y — f(X)]*|X) (2.11)
and we see that it suffices to minimize EPE pointwise:

f(z) = argmin Ey | x ([Y —_ c]2|X = 1:) ’ (2.12)

*Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y|X)Pr(X)
where Pr(Y'|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly

2.4 Statistical Decision Theory 19

The solution is
f(z) =E(Y|X = z), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = z is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point z, we might ask for the average
of all those y;s with input z; = 2. Since there are typically at most one
observation at any point z, we settle for

~

f(z) = Ave(yi|z; € Ni(z)), (2.14)

where “Ave” denotes average, and Nj(z) is the neighborhood containing
the k& points in T closest to z. Two approximations are happening here:

e expectation is approximated by averaging over sample data;

e conditioning at a point is relaxed to conditioning on some region
“close” to the target point.

For large training sample size N, the points in the neighborhood are likely
to be close to z, and as k gets large the average will get more stable.
In fact, under mild regularity conditions on the joint probability distri-
bution Pr(X,Y’), one can show that as N,k — oo such that k/N — 0,
f(:c) — E(Y|X =). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so does the metric size of the k-nearest neighbor-
hood. So settling for nearest neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the rate of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f(z) is approximately
linear in its arguments:

f(z) ~ zT3. (2.15)

This is a model-based approach—we specify a model for the regression func-
tion. Plugging this linear model for f(z) into EPE (2.9) and differentiating
we can solve for 3 theoretically:

B = [EXXD)E(XY). (2.16)

20 2. Overview of Supervised Learnin
p g

Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

e Least squares assumes f(z) is well approximated by a globally linear
function.

e k-nearest neighbors assumes f(z) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

FX) =Y fi(Xy). (2.17)
=1

This retains the additivity of the linear model, but each coordinate function
[is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)?7 What happens if we replace the
Lo loss function with the Ly: E|Y — f(X)|? The solution in this case is the
conditional median,

f(z) = median(Y|X = z), (2.18)

which is a different measure of location, and its estimates are more robust
than those for the conditional mean. L; criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G7 The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in G, the set of possible
classes. Our loss function can be represented by a K x K matrix L, where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere,

2.4 Statistical Decision Theory 21

where L(k,) is the price paid for classifying an observation belonging to
class G as Gy. Most often we use the zero—one loss function, where all
misclassifications are charged a single unit. The expected prediction error
is

EPE = E[L(G, G(X))), (2.19)

where again the expectation is taken with respect to the joint distribution
Pr(G, X). Again we condition, and can write EPE as

K
EPE = Ex) _ L[Gk, G(X)|Pr(Gk|X) (2.20)
k=1

and again it suffices to minimize EPE pointwise:

K
G(z) = argmin,g Z L(Gk, g)Pr(Gr| X = 2). (2.21)

k=1

With the 0-1 loss function this simplifies to

A

G(z) = argmin ¢g[1 — Pr(g|X = z)] (2.22)
or simply

G(X) = Gy if Pr(Gi| X = z) = max Pr(g|X = z). (2.23)
g

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using the conditional (discrete) dis-
tribution Pr(G|X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.

Again we see that the k-nearest neighbor classifier directly approximates
this solution—a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G via a binary Y, followed by squared error loss estima-
tion. Then f(X) = E(Y|X) = Pr(G = G1|X) if G, corresponded to ¥ = 1.
Likewise for a K-class problem, E(Y%|X) = Pr(G = Gi|X). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
i (X) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G|X) in Chapter 4.

22 2. Overview of Supervised Learning

Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated exactly (Ezercise 2.2).

2.5 Local Methods in High Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of k-nearest-neighbor estimates. It would seem that with a reasonably large
set, of training data, we could always approximate the theoretically optimal
conditional expectation by k-nearest-neighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any z
and average them. This approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a p-dimensional unit hypercube, as in Figure 2.6. Suppose we send out a
hypercubical neighborhood about a target point to capture a fraction 7 of
the observations. Since this corresponds to a fraction r of the unit volume,
the expected edge length will be e,(r) = r/?. In ten dimensions e1(0.01) =
0.63 and e19(0.1) = 0.80, while the entire range for each input is only 1.0.

2.5 Local Methods in High Dimensions 23

=]
Unit Cube - d=10
d=

\ ©
1 o d=2

1

=)
g .
)

0.0
I

0.0 0.2 0.4 0.6

Neighborhood

Fraction of Volume

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
the fewer observations we average, the higher is the variance of our fit.
Another consequence of the sparse sampling in high dimensions is that
all sample points are close to an edge of the sample. Consider IV data points
uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median
distance from the origin to the closest data point is given by the expression

1M~ Lfp
) (2.24)

d(p,N) = (1 ~3

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 5000, p = 10 , d(p, N) =~ 0.52, more than half
way to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The rcason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N*/7, where p is the dimension of the input space and N is the
sample size. Thus if N = 100 represents a dense sample for a single input
problem, then Njg = 100'? is the sample size required for the same sam-

