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COMBINATION OF FORECASTS 

 

 

 As the old saying goes, “Don’t put all of your eggs in one basket lest you drop the 

basket and lose all of your eggs.”  Suppose the head of a forecasting division of a 

company has two sources of forecasts for the company’s sales, one source being the 

forecasts generated by the division’s econometrics group using an econometric time 

series model and the other source being the aggregated forecasts of the regional sales 

managers of the company.  Suppose that the forecast horizon is h = 1 and represent the 

one-step-ahead forecasts of the econometrics group made at time t by )1(

1tf  and the 

forecasts of the managers as )2(

1tf .  Now let us consider the statistical properties of the 

combination forecast  
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Suppose that both of the forecasting methods are unbiased in that the one-step-

ahead forecast errors of the two methods, say )1(
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 Another theorem follows straightforwardly. 

 

 Theorem 2: The variance of the combination forecast error is 
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covariance of the forecast errors of the two methods.   

 

 Proof:  Note that )2(

1

)1(

1

)(

1 )1(   tt

c

t ewwee .  Therefore 

 

  2)2(

1

)1(

1

2)(

1 ])1([)(   tt

c

t ewweEeE  

 



 2 

   )()1(2)()1()( )2(

1

)1(

1

2)2(

1

22)1(

1

2

  tttt eeEwweEweEw  

 

   21

2

2

22

1

2 )1(2)1( ffff wwww   .       QED. 

 

 As it turns out, there is a choice of the weight for the first forecasting method, say 

*ww  , and thus for the weight of the second forecasting method, *)1( w , that 

minimizes the variance of the combination forecast error, ).( )(
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teVar    This result is stated 

in the following theorem.   

 Theorem 3: The choice of 
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of the combination method forecast error.      

 

 Proof: The problem of solving for the optimal weight amounts to a first order 

condition problem in the calculus.  Here the objective function is the variance of the 

combination forecast error, namely, ).()()( )(
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The normal equation is 
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The first order condition is  

 

   .0*)42(*)1(2*2 21

2

2

2

1  ffff www   

 

Then, after some algebra, we get the optimal weight 
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corresponding second order condition evaluated at *ww   is 
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which is positive for all values of w , much less at *ww  .  Thus, the second order 

condition for a minimum is met.  QED. 
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 Now for a discussion of the factors that affect the optimal weight, *w , placed on 

the first method.  First, we might note that the optimal weight doesn’t require that the 

covariance between the errors of the forecasting methods )( 21 ff  be negative as intuition 

might suggest.  However, it can be easily shown that, for fixed values of the variances of 

the forecast errors of the two methods, 2

1f and 2

2f , it is preferable to have a negative 

covariance rather than an positive covariance as the variance of the combination 

method’s forecast error variance is smaller in the former case than in the latter case.  

Thus, given one unbiased forecasting method and the choice between one of two 

unbiased forecasting methods with equal forecasting on accuracy, i.e. forecast error 

variance, one would choose as a combining method the one with smaller positive 

covariance or, if possible, the one with the greatest (in an absolute value sense) negative 

covariance.  In this way the benefits of forecast diversification are enhanced. 

 

Second, note that if the two unbiased methods are equally accurate, 2

2

2

1 ff   , the 

optimal weights for the two unbiased forecasting methods are equal to 1/2 irregardless of 

the covariance between the errors of the two forecasting methods.  Third, for a fixed 

accuracy of the first method and fixed covariance between the errors of the two methods, 

as the second forecasting method’s accuracy declines, i.e. as 2

2f , the optimal 

weight *w  on the first method approaches one while the optimal weight on the second 

method, *)1( w , approaches zero.  This can be shown by applying L’Hospital’s rule to 

the formula for *w  provided by Theorem 3.  Of course, this argument is symmetric in 

the two methods.  As  2

1f  and for fixed 2

2f  and 21 ff , the optimal weight on the 

second method *)1( w  approaches one while the optimal weight on the first method 

approaches zero. 

 

The next theorem presented here shows how diversification pays.  When the 

optimal weights are chosen for the unbiased forecasting methods, the variance of the 

combination error is no greater than the smallest error variance between the two 

forecasting methods.  Formally,  

 

Theorem 4 (Diversification Pays): Let the optimal combination forecast made 
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 Proof:  Classroom exercise.   
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ESTIMATION OF OPTIMAL COMBINATION WEIGHTS AND ADJUSTMENT 

FOR BIAS IN ONE OR MORE OF THE FORECASTS: THE NELSON AND 

GRANGER-RAMANATHAN COMBINATION METHODS 

 

Nelson Method: 

 

Assumption: Both methods produce unbiased forecasts.  That is, 𝐸 𝑒𝑡
 1  = 𝐸 𝑒𝑡

 2  =

 0.  
 

The estimating equation for deriving the Nelson combination (ensemble) weights is 

 

  𝑦𝑡 = 𝑤𝑓𝑡
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or equivalently,  
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Now apply ordinary least squares to this transformed equation (2) and get 𝑤  for the 

estimate of w.  Then the Nelson Combination forecast (score) is 
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Granger-Ramanathan Method:  

 

Assumption: One or more methods produce biased forecasts.  That is, for at least one of 

the methods, 𝐸 𝑒𝑡
 𝑖  ≠ 0 . 

 

The estimating equation for deriving the Granger-Ramanathan combination 

(ensemble) weights is  

 

  𝑦𝑡 = 𝑤0 +  𝑤1𝑓𝑡
(1)

+  𝑤2𝑓𝑡
 2 +  𝜀𝑡  .   (4) 

 

Now apply ordinary least squares to equation (4) and get the coefficient estimates 

𝑤 0, 𝑤 1, 𝑤 2 and form the combination (ensemble) 
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This is called the Granger-Ramanathan Combination forecast (score). 


