Review of Ordinary Differential Equations
 For Math 6324 - Dynamical Systems and Math 5334 - Partial Differential Equations.

- Calculus: differentiation and integration, curve sketching (max/min).
- Euler's formula:

$$
\begin{aligned}
& e^{ \pm i \theta}=\cos (\theta) \pm i \sin (\theta) \\
& \cos (\theta)=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right) \\
& \sin (\theta)=\frac{1}{2}\left(e^{i \theta}-e^{-i \theta}\right)
\end{aligned}
$$

- The Taylor series representation of $f(x)$ for x near x_{0} is

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots
$$

- First-order DE:
- Separable

$$
\frac{d y}{d x}=f(x, y)=h(x) g(y), \quad \frac{d y}{g(y)}=h(x) d x .
$$

- Linear constant-coefficient nonhomogeneous

$$
\frac{d y}{d x}=k x+l
$$

Solve with method of undetermined coefficients.

- Linear variable-coefficient nonhomogeneous

$$
\frac{d y}{d x}=p(x) y+q(x)
$$

Solve with integrating factor $u(x)=\exp \left(-\int p(x) d x\right)$.

- Second-order DE:
- Linear constant-coefficient homogeneous

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Let $y=e^{r x}$ to obtain the characteristic equation

$$
a r^{2}+b r+c=0
$$

Solve for r : real \& distinct, real \& repeated, complex conjugate.

- Linear constant-coefficient nonhomogeneous

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(x)
$$

where $f(x)$ is a polynomial, exponential, sin or cosine.
Solve with method of undetermined coefficients.

- Systems: rewrite a 2 nd order DE as a system of two DE.

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=f(x) \\
\text { Let } z=y^{\prime} \text { so that } z^{\prime}=y^{\prime \prime} \\
y^{\prime}=z \\
z^{\prime}=-\frac{b}{a} z-\frac{c}{a} y+\frac{1}{a} f(x)
\end{gathered}
$$

