Math 4325: Maps

(1) (Based on Strogatz 8.7.9)

$$
\dot{r}=r(1-r), \quad \dot{\theta}=1
$$

(a) Solve the differential equation for $r(t)$.
(b) Consider the surface of section defined by $\theta=\pi / 2$, and use the solution from (a) to define a Poincare' map.
(c) Find the fixed points of the Poincare' map and analyze their linear stability.
(d) Sketch the cobweb diagram illustrating the evolution of a few initial conditions.
(2) (Based on Strogatz 10.1.9)

$$
x_{n+1}=\frac{3 x_{n}}{1+x_{n}}
$$

(a) Find the fixed points and analyze their linear stability.
(b) Use the provided blank cobweb template to carefully (use a ruler and be accurate) plot the evolution of the following initial conditions: $x_{0}=-0.5,0.5$ and 4 .
(3)

Do Strogatz 10.1.12. A couple of comments:

- Superstable means $f^{\prime}(x)=0$ (see text). . I suggest plotting $f(x)$ to understand what would happen in the cobweb diagram and why these points are superstable
- "Numerically iterate" means to substitute x_{0} into the map and compute x_{1}. Then substitute x_{1} to get x_{2}, etc. You will have to use a calculator or software.
(4) (Based on Strogatz 10.2.6)

$$
x_{n+1}=r \cos \left(x_{n}\right)
$$

Use the provided blank cobweb templates to carefully (use a ruler and be accurate) sketch the dynamics of the map for $r=1,2$ and 4 . See if you can find a P2 orbit and a chaotic orbit.

Do Strogatz 10.3.4 (a \& b only)

Do Storgatz 10.3.11

