8.2 .8

$$
\begin{aligned}
& \dot{x}=x[x(1-x)-y] \\
& \dot{y}=y(x-a)
\end{aligned}
$$

$$
\text { ED: } \begin{gathered}
x[x(1-x)-y]=0 \\
x=0 \quad y=x(1-x) \\
y(x-a)=0
\end{gathered}
$$

$$
\text { If } x=0 \Rightarrow y=0
$$

$$
\text { If } y=x(1-x)
$$

$$
x(1-x)(x-a)=0
$$

$$
x=0,1, a
$$

$$
\Rightarrow(x y)=(00)(10)
$$

$$
(x, a(1-a))
$$

$$
D f=\binom{2 x-3 x^{2}-y-x}{y}
$$

$$
i f\left((0,0)=\left(\begin{array}{cc}
0 & 0 \\
0 & -a
\end{array}\right) \quad \lambda=0,-a\right.
$$

$$
\text { Singular case }(\lambda=0)
$$

$$
\begin{gathered}
\left.\Delta f\right|_{(1,0)}=\left(\begin{array}{cc}
-1 & -1 \\
0 & 1-e
\end{array}\right) \quad \lambda=-1,(1-a) \\
a<1: \text { Saddle } \\
a\rangle 1: \text { A. Stable. Node }
\end{gathered}
$$

$|f|_{-(a, a-(1-a))}=0 \Rightarrow$
When $a=0: \tau=0$ \& $\Delta=0$
weird Gif w/ $(x x)=(0,0)$
When $a=1 / 2$: $\tau=0 \quad \Delta>0$ HOFF
When $a=1: \tilde{c}<0 \quad \Delta=0$ Bf
with $(1,0)$

The main thing to observe is that charges, whatever they may be occur at $a=0,1 / 2$ and 1 . We suspect a fropt when $a=1 / 2$
To determine if the Host is Super us Subcrit, use PPLANE. Terms out it is Suererit as a is DECREASEA We low $1 / 2$. At $a=1 / 2$

$$
\lambda= \pm\left[-\left(\frac{1}{4}\right)\left(1-\frac{1}{2}\right)\right]^{1 / 2}= \pm i \sqrt{\frac{1}{8}} \Rightarrow \omega \approx \sqrt{\frac{1}{8}}
$$

Putting all the piecertogether gives the follouring Gif. diagram

As a drocases the limit cycle
collides o/ $x=0$, forming a tomoclinic orbit. For $a<0.33$ the w, a is gone.
What we will see:

$$
\begin{aligned}
& a=0 \quad a=0.33 \quad a=0.5 \quad a=1
\end{aligned}
$$

$(0,0)$ is linearly neutral but from the phase plane we see that it is unstable. Solutions eventually move away.
$(1,0)$ is a saddle.
($a, a(1-a)$) looks to be a A.stable focus. As the parameter a is increased, this E.P. moves towards the origin
$x^{\prime}=x(x(1-x)-y)$ and eventually collides with $(0,0)$ in a transcritical bifurcation.
$a=-0.5$
$y^{\prime}=y(x-a)$

\geqslant forward orbit from $(0.46,-0.86)$ left the computation window.
ョ backward orbit from ($0.46,-0.86$) --> a possible eq. pt. near (2.3e-05, -1.8e-39).
ady.
oose a saddle point with the mouse.
\geqslant equilibrium point at $(0,0)$ is not a saddle point.
$(0,0)$ after the bifurcation at $\mathrm{a}=0$, the origin has stable directions and unstable directions, though isn't a saddle in the usual linear sense.
$(1,0)$ remains a saddle.
($\mathrm{a}, \mathrm{a}(1-\mathrm{a})$) is now an unstable focus. Trajectories near this E.P. converge to the origin.
$\begin{array}{ll}x^{\prime}=x(x(1-x)-y) & a=0.2 \\ y^{\prime}=y(x-a) & \end{array}$

\geqslant forward orbit from $(0.15,-0.13)$ left the computation window.
\geqslant backward orbit from $(0.15,-0.13)$ left the computation window.
ady.
mputing the field elements.
ady.

Figures out of order. Scroll down to $\mathrm{a}=0.45$

($\mathrm{a}, \mathrm{a}(1-1 \mathrm{a})$) is now a stable focus and the limit cycle has disappeared. As a continues to increase this E.P. moves toward the E.P. at (1,0). They collide in a transcritical bifurcation.

$$
\begin{array}{ll}
x^{\prime}=x(x(1-x)-y) & a=0.7 \\
y^{\prime}=y(x-a) &
\end{array}
$$

\geqslant backward orbit from $(-0.43,-0.16)$ left the computation window.
ady.
\geqslant forward orbit from $(-0.4,0.22)-->$ a possible eq. pt. near ($-1.6 e-05,1.6 e-51$).
\geqslant backward orbit from $(-0.4,0.22)$ left the computation window.
ady.

For $\mathrm{a}>1$, the E.P. at $(1,0)$ that has been a saddle is now a stable node. In contrast, the E.P. at $\mathrm{a}(1-\mathrm{a})$ is now a saddle. Note that while this is all mathematically correct, from the point of view of predator-prey system this solution indicates a negative population and is not physically valid.

$$
\begin{aligned}
& x^{\prime}=x(x(1-x)-y) \\
& y^{\prime}=y(x-a)
\end{aligned}
$$

\geqslant backward orbit from ($-0.34,0.13$) left the computation window.
ady.
\geq forward orbit from ($-0.3,-0.21$) --> a possible eq. pt. near ($-1.8 \mathrm{e}-05,-8.7 \mathrm{e}-63$).
\geqslant backward orbit from ($-0.3,-0.21$) left the computation window.
ady.
$(0,0)$ continues to have stable directions and unstable directions.
$(1,0)$ is still a saddle.
($\mathrm{a}, \mathrm{a}(1-\mathrm{a}))$ is an unstable spiral. However, instead of trajectories spiraling to the origin, they spiral to
a stable limit cycle. The limit cycle appeared at a ~ 0.33. As a is increased, the limit cycle shrinks to collides with the E.P. point (a,a(1-a)), corresponding to a Hopf bifurcation. The fact that the limit cycle solution is stable indicates that it is a super-critical Hopf bifurcation.

```
\(x^{\prime}=x(x(1-x)-y)\)
\(a=0.45\)
\(y^{\prime}=y(x-a)\)
```


$$
1.5
$$

$$
\kappa \leftarrow \leftarrow \leftarrow
$$

Cursor position: (-1.17, 1.32)
\geqslant backward orbit from $(-0.041,-0.36)$ left the computation window.
ady.
\geqslant forward orbit from ($0.22,-0.23$) left the computation window.
\geqslant backward orbit from $(0.22,-0.23)$ left the computation window.
ady.

