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(0,0) is linearly neutral but from the phase plane we see that it is unstable. Solutions eventually move away.
(1,0) is a saddle.

(a, a(1-a)) looks to be a A.stable focus. As the parameter a is increased, this E.P. moves towards the origin
and eventually collides with (0,0) in a transcritical bifurcation.

X'=xx(1-x-vy) a=-0.5
y'=y(x-a)
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Cursor position: (-1.18, 1.12)

> forward orbit from (0.46, -0.86) left the computation window.

> backward orbit from (0.46, -0.86) --> a possible eq. pt. near (2.3e-05, -1.8e-39).
ady.

oose a saddle point with the mouse.

3> equilibrium point at (0, 0) is not a saddle point.
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(0,0) is linearly neutral but from the phase plane we see that it is unstable. Solutions eventually move away.
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Typewritten Text
(1,0) is a saddle.

thomascarr
Typewritten Text
(a, a(1-a)) looks to be a A.stable focus. As the parameter a is increased, this E.P. moves towards the origin 
                                    and eventually collides with (0,0) in a transcritical bifurcation.


(0,0) after the bifurcation at a = 0, the origin has stable directions and unstable directions, though isn't a saddle
in the usual linear sense.

(1,0) remains a saddle.

(a, a(1-a)) is now an unstable focus. Trajectories near this E.P. converge to the origin.

X'=xx(1-x-vy) a=0.2
y'=y(x-a)
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Cursor position: (-1.22, 1.31)

> forward orbit from (0.15, -0.13) left the computation window.

3> backward orbit from (0.15, -0.13) left the computation window.
ady.

mputing the field elements.

ady.

Figures out of order. Scroll down to a = 0.45
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(0,0) after the bifurcation at a = 0, the origin has stable directions and unstable directions, though isn't a saddle
in the usual linear sense. 
(1,0) remains a saddle.
(a, a(1-a)) is now an unstable focus. Trajectories near this E.P. converge to the origin.
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Figures out of order. Scroll down to a = 0.45


(a,a(1-1a)) is now a stable focus and the limit cycle has disappeared. As a continues to increase this E.P.
moves toward the E.P. at (1,0). They collide in a transcritical bifurcation.

X'=xx(@-x-y) o
y'=y(x-2a
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3> backward orbit from (-0.43, -0.16) left the computation window.

ady.

> forward orbit from (-0.4, 0.22) --> a possible eq. pt. near (-1.6e-05, 1.6e-51).
3> backward orbit from (-0.4, 0.22) left the computation window.

ady.
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(a,a(1-1a)) is now a stable focus and the limit cycle has disappeared. As a continues to increase this E.P. 
moves toward the E.P. at (1,0). They collide in a transcritical bifurcation.


For a > 1, the E.P. at (1,0) that has been a saddle is now a stable node. In contrast, the E.P. at a(1-a) is
now a saddle. Note that while this is all mathematically correct, from the point of view of predator-prey system
this solution indicates a negative population and is not physically valid.

X'=xx(1-x-vy) 1o

y'=y(x-a)
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3> backward orbit from (-0.34, 0.13) left the computation window.

ady.

> forward orbit from (-0.3, -0.21) --> a possible eq. pt. near (-1.8e-05, -8.7e-63).
3> backward orbit from (-0.3, -0.21) left the computation window.

ady.
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For a > 1, the E.P. at (1,0) that has been a saddle is now a stable node. In contrast, the E.P. at a(1-a) is 
now a saddle. Note that while this is all mathematically correct, from the point of view of predator-prey system
this solution indicates a negative population and is not physically valid.


(0,0) continues to have stable directions and unstable directions.

(1,0) is still a saddle.

(a,a(1-a)) is an unstable spiral. However, instead of trajectories spiraling to the origin, they spiral to

a stable limit cycle. The limit cycle appeared at a ~ 0.33. As a is increased, the limit cycle shrinks to collides with the
E.P. point (a,a(1-a)), corresponding to a Hopf bifurcation. The fact that the limit cycle solution is stable indicates that
it is a super-critical Hopf bifurcation.

X'=xx(1-x-vy) a=0.45
y'=y(x-a)
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Cursor position: (-1.17, 1.32)
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> backward orbit from (-0.041, -0.36) left the computation window.
ady.
> forward orbit from (0.22, -0.23) left the computation window.

3> backward orbit from (0.22, -0.23) left the computation window.
ady.
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(0,0) continues to have stable directions and unstable directions.
(1,0) is still a saddle.
(a,a(1-a)) is an unstable spiral. However, instead of trajectories spiraling to the origin, they spiral to 
a stable limit cycle. The limit cycle appeared at a ~ 0.33. As a is increased, the limit cycle shrinks to collides with the 
E.P. point (a,a(1-a)), corresponding to a Hopf bifurcation. The fact that the limit cycle solution is stable indicates that
it is a super-critical Hopf bifurcation.
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