Math 3313: Differential Equations Second-order ordinary differential equations

Thomas W. Carr

Department of Mathematics
Southern Methodist University
Dallas, $T X$

Outline

Mass-spring \& Newton's 2nd law
Properties and definitions
Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

Outline

Mass-spring \& Newton's 2nd law

Properties and definitions

Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

2nd order ODE

We've considered 1st order

$$
\frac{d x}{d t}=f(x, t)
$$

2nd order

$$
\frac{d^{2} x}{d t^{2}}=f\left(x, \frac{d x}{d t}, t\right)
$$

LInear, 2nd order, non-homogeneous

$$
a_{2}(t) \frac{d^{2} x}{d t^{2}}+a_{1}(t) \frac{d x}{d t}+a_{0}(t) x=f(t)
$$

Linear, 2nd order, constant-coefficient, non-homogeneous

$$
a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=f(t)
$$

If $f(t)=0$, ODE is homogeous.

Newton's 2nd law

$$
\begin{aligned}
\frac{d}{d t} \text { Momemtum } & =\sum \text { forces } \\
\frac{d}{d t}(\text { mass times velocity }) & =\sum \text { forces } \\
\frac{d}{d t}\left(m(t) \frac{d x}{d t}\right) & =\sum \text { forces } \\
\frac{d m}{d t} \frac{d x}{d t}+m(t) \frac{d^{2} x}{d t^{2}} & =\sum \text { forces }
\end{aligned}
$$

If $m(t)=$ constant, then $\frac{d m}{d t}=0$.

$$
\begin{aligned}
m \frac{d^{2} x}{d t^{2}} & =\sum \text { forces } \\
\text { mass times acceleration } & =\sum \text { forces }
\end{aligned}
$$

If forces depend only on time, we can simply integrate twice

$$
m \frac{d^{2} x}{d t^{2}}=f(t) \quad(\text { "phys 101") }
$$

In general, forces depend on position x and speed $\frac{d x}{d t}$.

Modeling the mass-spring

Outline

Mass-spring \& Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

2 initial conditions

2nd order linear ODE (' = prime means derivative)

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=f(t)
$$

If constant-coeficient

$$
a x^{\prime \prime}+b x^{\prime}+c x=f(t)
$$

To find $x(t)$ we have to "integrate" twice.

- Expect 2 unknown constants.
- Need 2 ICs

$$
x\left(t_{0}\right)=x_{0}, \quad x^{\prime}\left(t_{0}\right)=v_{0}
$$

Form of the solution

Homogeneous: $f(t)=0$

$$
x_{h}^{\prime \prime}+p(t) x_{h}^{\prime}+q(t) x_{h}=0, \quad \text { where } x_{h}(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)
$$

x_{h} is the sum of two linearly independent solutions, x_{1} and x_{2}.

$$
\text { Fundamental set }=\left\{x_{1}, x_{2}\right\}, \quad x_{2} \neq c x_{1}
$$

Nonhomogeneous with particular solution $x_{p}(t)$ due to forcing $f(t)$.

$$
x_{p}^{\prime \prime}+p(t) x_{p}^{\prime}+q(t) x_{p}=f(t)
$$

The complete solution is the sum of homogeneous and particular

$$
x(t)=x_{h}(t)+x_{p}(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t)
$$

Linear Independence

A set of functions $\left\{x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right\}$ are linearly dependent if $k_{1} x_{1}+k_{2} x_{2}+\ldots+k_{n} x_{n}$. $=0$ for some set of constants $k_{n} \neq 0$, for all n. Otherwise, independent.

Wronskian:

$$
\begin{equation*}
W\left(t_{0}\right)=x_{1}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right)-x_{1}^{\prime}\left(t_{0}\right) x_{2}\left(t_{0}\right) \tag{1}
\end{equation*}
$$

Outline

Mass-spring \& Newton's 2nd law
Proporties and definitions

Systems of ODEs

2nd order, linear, constant coeffients

Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

2nd order ODEs as a system

We've considered

$$
\frac{d^{2} x}{d t^{2}}=f\left(t, x, \frac{d x}{d t}\right), \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0} .
$$

Let the first derivative be a new variable:

$$
\begin{gathered}
\text { Let } \frac{d x}{d t}=y \\
\text { Then } \frac{d^{2} x}{d t^{2}}=\frac{d y}{d t}=f(t, x, y)
\end{gathered}
$$

So instead of a single 2nd order ODE, we have two first order ODEs.

$$
\begin{aligned}
& \frac{d x}{d t}=y, \quad x(0)=x_{0} \\
& \frac{d y}{d t}=f(t, x, y), \quad y(0)=x^{\prime}(0)=v_{0}
\end{aligned}
$$

Examples

ex.

$$
\begin{equation*}
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=f(t) \tag{2}
\end{equation*}
$$

Write as a system.
ex.

$$
\begin{equation*}
x^{\prime \prime}+x x^{\prime}+x^{2}=0 \tag{3}
\end{equation*}
$$

Write as a system.
ex.

$$
\begin{equation*}
x^{\prime \prime \prime}+\left(1-x^{2}\right) x^{\prime}+x=0 \tag{4}
\end{equation*}
$$

Write as a system of 3 first order ODEs
Numerical solvers need ODEs as systems. -> matlab demo

Outline

```
Mass-spring & Newton's 2nd law
Properties and definitions
Systems of ODEs
```


2nd order, linear, constant coeffients

Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring

Variable coefficient ODEs

Variation of Paramters

Exponential solutions

Linear, constant coefficient differential equations have exponential solutions.

$$
a x^{\prime \prime}+b x^{\prime}+c x=0
$$

Recall 1st order, linear, constant-coefficient

$$
x^{\prime}=k x \quad \Rightarrow \quad x \sim e^{k t}
$$

Apply to higher-order: let $x=e^{r t}$.
Substitute and solve for r. Note:

$$
\frac{d^{n}}{d t^{n}} e^{r t}=r^{n} e^{r t}
$$

Apply to $2 n d$ order L-CC

$$
\begin{aligned}
& a\left(r^{2} e^{r t}\right)+b\left(r e^{r t}\right)+c\left(e^{r t}\right)=0 \\
& \left(a r^{2}+b r+c\right) e^{r t}=0
\end{aligned}
$$

The characteristic equation determines the values of r

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{5}
\end{equation*}
$$

- Turned ODE into algebra.
- Quadratic for $r \Rightarrow$ two values for $r: r_{1}$ and r_{2}.

$$
x(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \quad \ldots . \text { sort of... depends... }
$$

Details and three different cases.

Summary

Given

$$
a x^{\prime \prime}+b x^{\prime}+c x=0
$$

Let $x=e^{r t}$.

- $r=r_{1}, r_{2}$: real \& distinct

$$
x=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \quad \text { exponential decay and/or growth }
$$

- $r=r_{0}, r_{0}$: real repeated.

$$
x=c_{1} e^{r_{0} t}+c_{2} t e^{r_{0} t} \quad t \exp r_{0} t \text { is second solution }
$$

- $r=\alpha \pm i \beta$: complex conjugate
$x=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} t e^{\alpha t} \sin (\beta t)$ exponentials with oscillations
- Important!! $\boldsymbol{e}^{i \beta t} \Leftrightarrow \cos (\beta t)$ and $\sin (\beta t)$.

Outline

Mass-spring \& Newton's 2nd law
 Properties and definitions
 Systems of ODEs
 2nd order, linear, constant coeffients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients
Forced mass-spring

Variable coefficient ODEs

Variation of Paramters

Char. equation with n roots

nth order, linear, constant coefficient

$$
a_{n} \frac{d^{n} x}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\ldots+a_{1} \frac{d x}{d t}+a_{0} x=0
$$

Let $x=e^{r t}$.

$$
\begin{equation*}
a_{n} r^{n}+a_{n-1} r^{n-1}+\ldots+a_{1} r+a_{0}=0 \tag{6}
\end{equation*}
$$

Characteristic equation for $r=$ nth degree polynomial. Can we finds it's n roots?
(i) Some are real and distinct:

$$
\begin{gathered}
\left(r-r_{1}\right)\left(r-r_{2}\right) \ldots\left(r-r_{j}\right)(\text { rest of poly })=0 \\
r=r_{1}, r_{2}, \ldots, r_{j}, \text { the rest } \\
x=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+\ldots+c_{j} e^{r_{j} t}+\text { the rest }
\end{gathered}
$$

n roots (continued)

ii) Some have multiplicity m. Suppose r_{0} is a root m times.

$$
\left(r-r_{0}\right)^{m}(\text { rest of poly })=0
$$

Via Reduction or Order m times:

$$
x=c_{1} e^{r_{0} t}+c_{2} t e^{r_{0} t}+\ldots+c_{m-1} t^{m-1} e^{r_{0} t}+\text { the rest }
$$

ii) Some are complex-conjugate \ldots with multiplicity $m . r=\alpha \pm i \beta$ are each a root m-times.

$$
\begin{aligned}
(r-(\alpha+i \beta))^{m}(r-(\alpha-i \beta))^{m}(\text { rest of poly }) & =0 \\
\left(r^{2}-2 \alpha r+\left(\alpha^{2}+\beta^{2}\right)\right)^{m}(\text { rest of poly }) & =0
\end{aligned}
$$

Number of roots is $2 m$.

$$
\begin{aligned}
x= & e^{\alpha t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right)+ \\
& e^{\alpha t} t\left(c_{3} \cos \beta t+c_{4} \sin \beta t\right)+\ldots+ \\
& e^{\alpha t} t^{m-1}\left(c_{*} \cos \beta t+c_{*} \sin \beta t\right)+\text { the rest }
\end{aligned}
$$

How do we factor the polynomial?

- "Obvious"
- Recognize standard form (Pascal's triangle).
- Find one root and the factor with synthetic division. (Optional and esoteric case.)

$$
\begin{gathered}
\text { ODE }+a_{0} x=0 \\
\text { Let } x=e^{r t} \Rightarrow \operatorname{Poly}(r)+a_{0}=0 . \\
\text { Factor: }\left(r-r_{1}\right)\left(r-r_{2}\right) \ldots\left(r-r_{n}\right)=0 \\
a_{0}=r_{1} r_{2} \ldots r_{n} \Rightarrow \text { Try integer roots of } a_{0} .
\end{gathered}
$$

- Numerical (Newton's method)

Examples

Solve the following: ex.

$$
\begin{equation*}
x^{\prime \prime \prime}-x^{\prime \prime}-6 x^{\prime}=0 \tag{7}
\end{equation*}
$$

ex.

$$
\begin{equation*}
x^{\prime \prime \prime \prime}+3 x^{\prime \prime \prime}+3 x^{\prime \prime}+x^{\prime}=0 \tag{8}
\end{equation*}
$$

ex.

$$
x^{\prime \prime \prime \prime}+8 x^{\prime \prime}+16 x=0
$$

ex.

$$
\begin{equation*}
x^{\prime \prime \prime}+x^{\prime \prime}-6 x^{\prime}+4 x=0 \tag{1}
\end{equation*}
$$

$r_{1}=1$. Factor... continue.

Outline

```
Mass-spring & Newton's 2nd law
Properties and definitions
Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
```


Free mechanical vibrations

Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

Terms to know

Simple harmonic motion
Polor coordinates
Amplitude \& phase
Free response \Rightarrow no friction/resistance/damping Underdamped vs. critically damped vs. overdamped.

Outline

Mass-spring \& Newton's 2nd law
Properties and definitions
Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

Quick review

2nd order, linear, variable coefficient, non-homogeneous

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=f(t)
$$

Constant coefficient

$$
a x^{\prime \prime}+b x^{\prime}+c x=f(t)
$$

Homogeneous problem:

$$
a x_{h}^{\prime \prime}+b x_{h}^{\prime}+c x=0, \quad \text { let } x=e^{r t} \quad \Rightarrow x_{h}=c_{1} x_{1}+c_{2} x_{2}
$$

Non-homogeneous problem:

$$
a x_{p}^{\prime \prime}+b x_{p}^{\prime}+c x_{p}=f(t) \quad \Rightarrow \text { Find } x_{p} \text { somehow. }
$$

Complete solution

$$
x=x_{h}+x_{p}=c_{1} x_{1}+c_{2} x_{2}+x_{p}
$$

Apply ICs LAST to x. Do not apply ICs to x_{h}.

When to use MUC

IF the ODE is constant coefficient. . .
AND if $f(t)=\ldots$

- polynomial
- exponential
- sin or cos
- combinations of the above

Then find x_{p} with MUC.

Theory and examples.

Summary MUC

Given a linear ODE

$$
L(x)=F_{1 m}(t) e^{a_{1} t}+F_{2 n}(t) e^{a_{2} t}+\ldots
$$

- Solve for x_{h}.

$$
L\left(x_{h}\right)=0 \quad \text { (note the roots } r \text { and their multiplicities.) }
$$

- Solve for x_{p}.
- Superposition: consider each part of f separately. Find solutions and add.
- $f_{j m}=F_{j m}(t) e^{a_{j} t}$
- Guess $x_{p j} \sim P_{j m}(t) e^{a_{j} t} t^{k}$
- $k=$ number of times r is a root if $a=r$.
- If $f_{j} \sim \sin \beta t$ or $\cos \beta t$ always guess both.
- $x_{p}=x_{p 1}+x_{p 2}+\ldots$.

Substitute into ODE and find the coefficients.

- $x=x_{h}+x_{p}$

Apply ICs last.

Outline

```
Mass-spring & Newton's 2nd law
Properties and definitions
Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
```

Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

No damping \& harmonic forcing

How does the mass-spring respond to a force $f(t)$?

$$
m x^{\prime \prime}+b x^{\prime}+k x=f(t)
$$

- No damping (no resistance, no dissipation): $b=0$.
- Harmonic forcing: $f(t) \sim \sin \omega_{f} t$ or $\cos \omega_{f} t$.

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega_{f} t
$$

- F_{0} is the forcing amplitude and ω_{f} is the forcing frequency.

Solve using MUC.

Resonance: if $b=0$, then when $\sqrt{k / m}=\omega_{f}$.

WITH damping \& harmonic forcing

$$
m x^{\prime \prime}+b x^{\prime}+k x=F_{0} \cos \omega_{f} t
$$

Solve using MUC.

- How does damping change the solution?
- How does damping change resonance?

Outline

Mass-spring \& Newton's 2nd law
Proporties and definitions
Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

Introduction

General, 2nd order, linear, homogeneous, ODE

$$
a_{2}(t) x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0}(t) x=0
$$

- Coefficients depend on t
- Problem if $a_{2}\left(t=t_{s}\right)=0$. ODE: 2nd order "becomes" 1st order near $t=t_{s}$.
- If $a_{2}\left(t_{s}\right)=0$ or if either $a_{1}\left(t_{s}\right)$ or $a_{0}\left(t_{s}\right)$ is undefined, then $t=t_{s}$ is a singular point.

There is no general method to solve ODEs with variable coefficients.

- Exact solutions: only for specific cases (e.q. Euler).
- Approximate solutions: require series.

Euler Equation (2nd order)

$$
\begin{equation*}
a t^{2} x^{\prime \prime}+b t x^{\prime}+c x=0 \tag{11}
\end{equation*}
$$

The power of t matches the number of derivatives.
Solution: let $x=t^{r}$
Substitute and find equation for r.
Derive the Indicial equation for r;

$$
\begin{equation*}
a r^{2}+(b-a) r+c=0 \tag{12}
\end{equation*}
$$

Are the values of $r \ldots$

- Real and distinct.
- Real and repeated.
- Complex conjusgate.

What do the solutions look like in each case?

Euler examples

ex.

$$
\begin{equation*}
2 t^{2} x^{\prime \prime}+t x^{\prime}-15 x=0 \tag{13}
\end{equation*}
$$

Solve.
ex.

$$
\begin{equation*}
t^{2} x^{\prime \prime}+7 t x^{\prime}+13 x=0 \tag{14}
\end{equation*}
$$

Solve.

Higher order Euler

$$
\begin{equation*}
a_{n} t^{n^{n}} \frac{d^{n} x}{d t^{n}}+a_{n-1} t^{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\ldots+a_{1} t \frac{d x}{d t}+a_{0} x=0 \tag{15}
\end{equation*}
$$

let $x=t^{r}$.
Higher order polynomial for r.

Compare $\sin (x)$ to $\sin (\ln (x))$

(Plots made using Wolfram Alpha)

Outline

Mass-spring \& Newton's 2nd law
Proporties and definitions
Systems of ODEs
2nd order, linear, constant coeffients
Higher order, linear, constant coeffients
Free mechanical vibrations
Method of Undetermined Coefficients
Forced mass-spring
Variable coefficient ODEs
Variation of Paramters

Review of solutions

2nd-order, linear, ODE

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=f(t)
$$

We've consider:

$$
\begin{aligned}
a x^{\prime \prime}+b x^{\prime}+c x & =f(t) \sim F_{m}(t) e^{a t}, \quad a \text { possibly complex } \\
a t^{2} x^{\prime \prime}+b t x^{\prime}+c x & =0
\end{aligned}
$$

Now allow for arbitrary coefficients $(p(t)$ and $q(t))$ and forcing $(f(t))$. Solution = homogeneous + particular

$$
x=x_{h}+x_{p}=c_{1} x_{1}+c_{2} x_{2}+x_{p}
$$

Var. of Par. method

IF we can find $\left\{x_{1}, x_{2}\right\}$ such that

$$
x_{h}=c_{1} x_{1}+c_{2} x_{2}
$$

Then we can find x_{p} FOR ANY $f(t)$ using variation of parameters.

$$
\begin{equation*}
x_{p}=v_{1}(t) x_{1}(t)+v_{2}(t) x_{2}(t) \tag{16}
\end{equation*}
$$

- v_{1} and v_{2} are the "parameters" that are now variable functions.
- v_{1} and v_{2} are unknown.
- x_{1} and x_{2} are from the homogeneous solution and known.
- Substitute proposed solution and find 2 conditions for the 2 unknowns v_{1} and v_{2}.

Var. of Par. example

ex.

$$
\begin{equation*}
x^{\prime \prime}+x=\tan t \tag{17}
\end{equation*}
$$

Find x_{h} and then x_{p}.

See next slide for discussion of alternative var par formula.
ex.

$$
\begin{equation*}
x^{\prime \prime}-x=t^{-2} e^{t} \tag{18}
\end{equation*}
$$

Solve.
ex.

$$
\begin{equation*}
t^{2} x^{\prime \prime}+t x^{\prime}-x=t^{1 / 2} \tag{19}
\end{equation*}
$$

What is $f(t)$? Solve.

Alternative var par formula

Solve for v_{1} and v_{2} from the two conditions.

$$
\begin{aligned}
& v_{1}^{\prime} x_{1}+v_{2}^{\prime} x_{2}=0 \\
& v_{1}^{\prime} x_{1}^{\prime}+v_{2}^{\prime} x_{2}^{\prime}=f
\end{aligned}
$$

From the first equation

$$
v_{1}^{\prime}=-v_{2}^{\prime} \frac{x_{2}}{x_{1}}
$$

Substitute into the second equation

$$
\begin{aligned}
-v_{2} \frac{x_{2}}{x_{1}} x_{1}^{\prime}+v_{2}^{\prime} x_{2}^{\prime} & =f \\
v_{2}^{\prime}\left(x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}\right) & =f x_{1} .
\end{aligned}
$$

Note that the term in parenthesis is the Wronskian.

$$
\begin{gather*}
v_{2}^{\prime}=\frac{f x_{1}}{W\left(x_{1}, x_{2}\right)} \Rightarrow v_{2}=\int \frac{f x_{1}}{W\left(x_{1}, x_{2}\right)} d t \tag{20}\\
v_{1}^{\prime}=-\frac{f x_{1}}{W\left(x_{1}, x_{2}\right)} \frac{x_{2}}{x_{1}}=-\frac{f x_{2}}{W\left(x_{1}, x_{2}\right)} \frac{x_{2}}{x_{1}} \Rightarrow v_{1}=-\int \frac{f x_{2}}{W\left(x_{1}, x_{2}\right)} d t \tag{21}
\end{gather*}
$$

Alternative var par formula

Substitute results for v_{1} and v_{2} into x_{p}.

$$
x_{p}(t)=-\int \frac{f(s) x_{2}(s)}{W(s)} d s x_{1}(t)+\int \frac{f(s) x_{1}(s)}{W(s)} d s x_{2}(t)
$$

Bring x_{1} and x_{2} into the integral.

$$
\begin{equation*}
x_{p}(t)=\int \frac{\left[x_{1}(s) x_{2}(t)-x_{1}(t) x_{2}(s)\right]}{W(s)} f(s) d s \tag{22}
\end{equation*}
$$

Call that big fraction $G(t, s)$ whose parts are all known. G is a known function in terms of the homogeneous solution.

$$
x_{p}(t)=\int G(t, s) f(s) d s
$$

G is referred to as the Green's function or Influence function or Impulse response.
The integral is a solution machine. Given $L(x)=f(t)$. Find G. Then for any f just plug into the integral and out pops x_{p}.

