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Definition

Solution process:

Differential equation −→ Laplace transform: L −→ Algebraic equation
↓ solve ↓ solve

Solution to ODE ←− Inverse laplace: L−1 ←− Algebraic solution

• Idea is that using L and L−1 allows for easier solution.
• Allows us to tackle discontinuous functions.

Definition of L:
F (s) is the L-Transform of f (t), t ≥ 0:

F (s) = L[f (t)] =
∫ ∞

0
e−st f (t)dt (1)

Write this down!
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Definition (cont.)

F (s) = L[f (t)] =
∫ ∞

0
e−st f (t)dt (2)

Write this down!
• Integration in t leaves a function of s.
•
∫∞

0 ⇒ Improper integral.
Must make sure the limit exists.

∫ ∞
0

g(t) dt = lim
b→∞

∫ b

0
g(t) dt

If the limit exists, convergence, otherwise, divergence
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Laplace of eat

ex. Use the integral definition to find the Laplace transform of eat .

Substitute f (t) = eat and integrate.

F (s) =
1

s − a
, s > a (3)

Given f (t) L→ F (s), there is an inverse Laplace operator so that we
can take F (s) back to f (t).

f (t)
L
�
L−1

F (s) and L−1 [L [f (t)]] = f (t) (4)

eat L�
L−1

1
s − a

(5)
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Laplace is a linear operator

L[c1f1 + c2f2] = c1L[f1] + c2L[f2]
= c1F1 + c2F2

L−1[c1F1 + c2F2] = c1L−1[F1] + L−1[F2]

= c1f1(t) + c2f2(t)

ex.
F (s) =

5
s − 2

+
8
3

1
s + 3

(6)

Find f (t).
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Examples

ex. f (t) = 1.
Find F (s).

ex. f (t) = cos(bt)
Find F (s).

ex. F (s) = 3+3s
s2+10

Find f (t).

ex. f (t) = tn.
Find F (s).

ex. f (t) = 2t5

Find F (s).

ex. F (s) = 6
s4

Find f (t).
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Step function

ex.

f (t) =
{

0 0 ≤ t ≤ t0
a t0 ≤ t

Find F (s).

ex. Heaviside- or Unit-step function

H(t − t0) =
{

0 0 ≤ t ≤ t0
1 t0 ≤ t

H(t − t0)
L
�
L−1

1
s

e−st0
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Some properties

Linearity: already done.

Shifting property:

ect f (t)
L
�
L−1

F (s − c)

Mult by exp in t
L
�
L−1

Shift in s.

Derive using the integral definition.

ex.
F (s) =

2
(s − 2)3 (7)

Invert
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Some properties (cont)

Derivative of F (s):

−tf (t)
L
�
L−1

dF (s)
ds

Derive using the integral definition.

ex.
L[t cos(bt)] =? (8)

Use the derivative property.
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Derivative of x(t)

We want to solve ODEs

ax ′′ + bx ′ + cx = f (t)

We will need to know the Laplace transform of x ′ and x ′′.

dx
dt

L
�
L−1

sL[x ]− x(0) (9)

Derive using the integral definition.
Using integration by parts twice, we can show that

d2x
dt2

L
�
L−1

s2L[x ]− sx(0)− dx(0)
dt

(10)

The ICs are part of the result for Laplace of derivatives.
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Table of Laplace Transform Pairs
Given on quizzes and exams
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Inverse Laplace integral operator

f (t) = L−1[F (s)] =
1

2πi

∫
c

estF (s) ds

where c is a Bromwich contour in the complex s plane.

For any given F (s), substitute into the integral definition for the
inverse Laplace and compute the line integral.

Ack! Instead, use the table of transform pairs whenever possible.
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Partial fractions
Goal: break F (s) into simpler functions each invertible using the table of transform
pairs.

Partial fractions: the thing that breaks F (s) into pieces if F (s) is a rational polynomial
the the degree of the denomination greater than the numerator.

F (s) =
bmsm + bm−1sm−1 + . . .+ bas + b0

sn + an−1sn−1 + . . .+ a1s + a0
, n > m.

ex.
F (s) =

2s
s2 − 5s + 6

(11)

Partial fractions then use table.

• Factor the denominator (find roots).

• Expand using partial fractions.

• Multiply by the denominator.

• Equate powers of s.

• Solve for the coefficients.

• Use the table
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Solution process

Differential equation −→ Laplace transform: L −→ Algebraic equation
↓ solve

Solution to ODE x(t) ←− Inverse laplace: L−1 ←− Algebraic solution X(s)

Consider a constant-coefficient ODE

ax ′′ + bx ′ + cx = f (t), x(0) = x0, x ′(0) = v0

• Apply the Laplace operator.
• Use the ICs
• Solve for X (s).
• Invert

Challenge is typically L−1.
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Examples

ex.
x ′′ − x ′ − 6x = 0, x(0) = 2, x ′(0) = −1 (12)

Solve using Laplace transforms.

ex.
x ′′ + 2x ′ + 5x = cos t , x(0) = 0, x ′(0) = 1 (13)

Solve using Laplace transforms.

ex.
x ′′ + x = cos t , x(0) = 0, x ′(0) = 0 (14)

Solve using Laplace transforms.
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Not so nice forcing

For
ax ′′ + bx ′ + cx = f (t),

if f is "nice" we can use MUC and/or perhaps Var of Par.

Suppose f (t) is not so nice, specifically, a piece-wise continuous or
discontinuous function. The other methods may be possible treating
each piece separately and then patching the solutions together.
However, Laplace transforms can often find the answer in a
straightforward way.
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Representing piecewise continuous f (t)

Heaviside- or unit-step function.

H(t) =
{

0 0 ≤ t < t0
1 t0 ≤ t

H(t − t0)
L
�
L−1

1
s

e−st0

• H is "off" for t < t0 then "on" for
t ≥ t0.

• "Switching" time is t0.

ex.
f (t) = H(t − a)− H(t − b), a < b. Sketch it. (15)

ex.
f (t) = sin(t − a)[H(t − a)− H(t − b)], a < b. Sketch it. (16)

ex.
f (t) = sketch. Construct function (17)

ex.
f (t) = 3H(t) + H(t − 2) + 4

(
e−(t−4) − 1

)
H(t − 4) Sketch it. (18)
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Laplace of piecewise continuous f (t)

In general, we can construct piecewise continuous f (t) by adding
together the separate pieces:

f (t) = f1(t − c1)H(t − c1) + f2(t − c2)H(t − c2) + . . . .

To find L[f (t)] we need to find

L[f (t − a)H(t − a)] = Use the integral definition to compute. (19)

f (t − a)H(t − a)
L
�
L−1

e−saF (s) (20)

ex.
L[e3tH(t − 4)] = Sketch and transform. (21)

Derive the alternative formula

g(t)H(t − a)
L
�
L−1

e−saL[g(t + a)] (22)
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Examples

ex.
L[sin(t)H(t − π

2
)] = transform (23)

ex.

X (s) =
e−s

s2 + 1
− e−2s

s2 + 2
(24)

Invert
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ODEs with discontinuous forcing

Differential equation −→ Laplace transform: L −→ Algebraic equation
↓ difficult ↓ solve

Solution to ODE x(t) ←− Inverse laplace: L−1 ←− Algebraic solution X(s)

Process with Laplace remains the same, just a bit more work with L and L−1.

ex.

x ′′ − 3x ′ + 2x = g(t) =

 0 t < 1
3 1 ≤ t < 2 = 3[H(t − 1)− H(t − 2)]
0 2 ≤ t

(25)
x(0) = 0, x ′(0) = 0

Solve

ex.
Solve the LC-circuit problem with cosine forcing that turns on at t = 0
and off at t = 3π/2.
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Convolution: definition
How much do f and g have in common and when?

f (t) ∗ g(t) =
∫ t

0
f (τ)g(t − τ) dτ

• Multiply f (τ) . . .
• by a shifted version of g(τ) . . .
• t is the amount of the shift . . .
• Determine the resulting area.

f ∗ g =

∫ t

0
f (τ)g(t − τ) dτ =

∫ t

0
g(τ)f (t − τ) dτ = g ∗ f

fix f and shift g = fix g and shift f

L[f ∗ g] =L

[∫ t

0
f (τ)g(t − τ) dτ

]
= F (s)G(s)
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Examples

ex.
X (s) =

1
s(s2 + 1)

(26)

Invert
ex.

X (s) =
1

(s2 + 1)2 (27)

Invert
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ODEs and the convolution

Consider
ax ′′ + bx ′ + cx = f (t), x(0) = x0, x ′(0) = v0 (28)

Apply the Laplace transform.

For simplicity assume x0 = 0 and v0 = 0.

X(s) = F (s)
1

as2 + bs + c
= F (s)G(s) where G(s) =

1
as2 + bs + c

G(s) contains info from the ODE. Called the Transfer Function.

Use convolution to invert.

L−1[F (s)] = f (t) L−1[G(s)] = g(t)

L−1[Transfer function] = Impulse response

x(t) =
∫ t

0
f (τ)g(t − τ) dτ
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Solution machine

• Given the ODE: L[x(t)] = f (t)
L[x ] represents the left-hand side with all the x ′s.

• The ODE operator L determines G(s) and hence g(t). KNOWN!

• The right hand side is the forcing f (t). KNOWN.

• The solution for ANY forcing f can be found by using the convolution.

• Plug in a new f and integrate.

• Same idea as variation of parameters.

ex.
x ′′ − 16x = f (t), x(0) = 0, x ′(0) = 1. (29)

Solve and express the result using a convolution integral.

ex. f (t) = et . Substitute into the integral and integrate.

ex. f (t) = et [H(t − 1)− H(t − 2)]. Substitute into the integral and integrate.
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Definition (lazy) of Dirac Delta

• Recall unit step H(t)
Jumps instantaneously from 0 to 1.

• Consider gradual change with Ĥ(t).
Increases over interval −t0 to t0.

• Consider the derivative of Ĥ(t).
Slow is 0, then m, then 0.

• Take the limit as Ĥ → H.
m (slope)→∞. 2t0 (width)→ 0.

• Then dĤ(t)
dt →

dH
dt = δ(t)

δ(t):a function with 0 width, infinite height, located at t = 0.



Introduction Inverse Laplace transform Solving ODEs with Laplace transforms Discontinuous forcing functions Convolution Dirac Delta

Properties

Dirac delta located at t = a (instead of 0).

δ(t − a) = 0, for t 6= a
δ(0) = undefined (infinite) fort = a.

∫ t

−∞
δ(τ) dτ =

∫ t

−∞

dH(τ)

dτ
dτ

= H(t)− H(−∞)

= H(t)− 0
= 1 if t > 0

δ(t − a): located at t = a, has 0 width, infinite height, and area of 1.



Introduction Inverse Laplace transform Solving ODEs with Laplace transforms Discontinuous forcing functions Convolution Dirac Delta

Sifting property and Laplace

Sifting property: ∫ ∞
−∞

g(t)δ(t − a) dt = g(a) (30)

Integral of g with δ(t − a) gives the value of g at t = a.
Derive

Laplace:
δ(t − a)

L
�
L−1

e−sa (31)

Derive



Introduction Inverse Laplace transform Solving ODEs with Laplace transforms Discontinuous forcing functions Convolution Dirac Delta

Apply to ODEs
(Borrowing from the slide on Convolution)

Consider
ax ′′ + bx ′ + cx = f (t), x(0) = 0, x ′(0) = 0. (32)

Apply the Laplace transform.

X(s) = F (s)
1

as2 + bs + c
= F (s)G(s) where G(s) =

1
as2 + bs + c

G(s) contains info from the ODE. Called the Transfer Function.

Consider
ax ′′ + bx ′ + cx = δ(t), x(0) = 0, x ′(0) = 0. (33)

Apply the Laplace transform.

X(s) =
1

as2 + bs + c
= G(s)

G(s) is the Laplace transform of the Impulse response g(t).
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Some examples

ex. Consider a mass-spring system with mass of 1 kg, damping
coefficient of 2 kg/s and spring constant of 2 kg/s2. The mass is
initially at rest. At t = 3 it is given a sharp impulse with a hammer.
What is the resulting motion?
Model and solve.

ex. Marching soldiers have sometimes been told to break stride and
march out of step when crossing a bridge. Why? Suppose the bridge
can be modeled as a mass-spring system with m = 1 and k = 1 and
the soldiers footsteps a sequence of delta-dirac functions. Thus,

x ′′ + x =
∞∑

k=1

δ(t − 2kπ), x(0) = x ′(0) = 0. (34)

Solve.


