Name:

Math 3313 Homework -Logistic Equation

Instructions:

- Hand-drawn sketchs should be neat, clear, of reasonable size, with axis and tick marks appropriately labeled. All figures, hand drawn computer generated, should have a short caption explaining what they show and describe. Any figure without a caption will not be graded.
- Staple or bind all pages together. DO NOT dog ear pages as a method to bind.

Important Concepts:

- Experience using ode45, which uses a Runge-Kutta 45 solver. The solver is now a "black box". We provide ICs and in provides the numerical solution. All the details of the numerial approximator/solver are "inside" ode45.
- Develop a habit of experimenting, probing and testing mathematical models just as one would a physical system. Change the experimental set up (initial conditions, parameters, model), observe results, reflect on why there are changes or perhaps not changes.

Problems:

Consider the Logistic Equation:

$$
\frac{d x}{d t}=r x(K-x), \quad K=1
$$

(a) Let $r=0.5$. Set the initial condition below the carrying capacity and simulate. Then set the initial condition above the carrying capacity and simulated. Describe your results.
(b) Let $r=2.0$. How do your results in (b) differ from (a)?
(c) Suppose we change the self-competition term to $d x / d t \sim-x^{p}$. That is,

$$
\frac{d x}{d t}=r x\left(K-x^{p}\right)
$$

Experiment by choosing $p<1$ and $p>1$ to determine which corresponds to weaker or greater competition. Turn a figure for each case in c) that demonstrates your conclusion.
(d) Reset the parameters as in (a) so that $r=0.5, K=1$ and $p=1$. Let the initial condition be $x(0)=-1$. What happens? Does this make sense and why/why not?

Note, for each of the figures turned in, be sure to adjust the axis $\left(\operatorname{axis}\left(\left[t_{\min } t_{\max } x_{\min } x_{\max }\right]\right)\right.$) so that the solution fills most of the figure.

