Math 3313 Homework - Euler Numerical Method

Instructions:

- Hand-drawn sketchs should be neat, clear, of reasonable size, with axis and tick marks appropriately labeled. All figures, hand drawn computer generated, should have a short caption explaining what they show and describe. Any figure without a caption will not be graded.
- Staple or bind all pages together. DO NOT dog ear pages as a method to bind.

Important Concepts:

- How does stepsize affect numerical accuracy?
- Practice with matlab.

Problems:

- 1. For the example in class, $\frac{dx}{dt} = 2x + 5$, if $t_0 = -1$, $t_f = 2$, and $x(-1) = e^{-2} (5/2)$
 - (a) and h = 0.1, what should N be?
 - (b) and h = 0.05, what should N be?
 - (c) and N = 100, what should h be? Print this figure and turn in.
 - (d) Simulate the ODE for each case (a), (b) and (c). Which fits the analytical solution the best? Matlab tips: The syntax for the initial condition is "x(-1)=exp(-2) - (5/2)". Note, you can use the "data cursor" to select the last computed point on the curve to obtain x(2).
- 2. Consider $\frac{dx}{dt} = \sin(x+t)$, x(0) = 1.
 - (a) Let h = 0.5 and solve numerically from $t_0 = 0$ to $t_f = 10$.
 - (b) Decrease h by half until you can't see a change in the result from one value of h to the next. Print a figure for the last case and indicate what stepsize you used.
 - (c) For each value of h you used in b, how many steps (N) were required.
- 3. Consider $\frac{dx}{dt} = \frac{\cos t}{x}$, $x(0) = x_0$. (a) Solve analytically. What restriction is necessary on x_0 so that the solution is real?
 - For (b) through (d) use h = 0.1 and N = 100 to simulated from t = 0to10.
 - (b) Simulate numerically with x(0) = 2.
 - (c) Simulate numerically with x(0) = 1.5.
 - (d) Simulate numerically with x(0) = 1. What happened in this case that is different than in (b) and
 - (c)? Print this figure and turn in.

Note, for each of the figures turned in, be sure to adjust the axis $(axis(|t_{min}, t_{max}, x_{min}, x_{max}|))$ so that the solution fills most of the figure.