Name:

Math 3313 Homework -Autonomous DE © Equilibrium

Instructions:

- Hand-drawn sketchs should be neat, clear, of reasonable size, with axis and tick marks appropriately labeled. All figures should have a short caption explaining what they show and describe. Any figure without a caption will not be graded.
- Staple or bind all pages together. DO NOT dog ear pages as a method to bind.

Important Concepts:

- What is the different between an autonomous and non-autonomous ODE?
- For an autonomous ODE you should be able to:
- Identify equilibrium points.
- Sketch the phase line.
- Determine stability of the equilibrium points.
- Very important... Understand how the phase line relates to solutions families $x(t)$.

Problems:

1. In class we examine the $\operatorname{ODE} x^{\prime}=x^{2}-1$. Now consider

$$
x^{\prime}=f(x)=x^{2}+r
$$

where r is a parameter that can take the values $r=-1,-0.5,-0.1,0.1$. For each value of r :
(a) Sketch $f(x)=x^{2}+r$ and determine the equilibrium points.
(b) Draw the phase line.
(d) Determine the stability of the equilibrium points.
(d) Plot solutions families $x(t)$.
(e) Describe how location of the equilibrium points and their stability change as you increase the parameter r.
2. Consider the ODE

$$
x^{\prime}=f(x)=\sin (x)-r x \quad \text { for } \quad r=1,0.25,0.1
$$

For each value of r
(a) First sketch the curve $f_{1}(x)=\sin (x)$. Then, on the same graph, sketch the line $f_{2}(x)=r x$ for the different values of r. Because $f=f_{1}-f_{2}$ is the difference between the two curves. Where the two curves intersect $f=0$; these are the equilibrium points. Label these points.
(c) Draw the phase line.
(d) Determine the stability of the equilibrium points.
(d) Plot solutions families $x(t)$.
(e) Describe how location of the equilibrium points and their stability change as you increase the parameter r.

- $x^{\prime}=d x / d t$ NOT $d x / d r . r$ is a fixed parameter that you set. It is not the independent variable.
- Double check that your phase line is consistent with your direction field. They should both indicated the same stability information and $t \rightarrow \infty$ behavior of solutions.
- There is still a phase line when there are no equilibrium points.

