Sec. 1.4.1

1) \(\frac{dx}{dt} = \frac{x}{1+t^2} = f(t,x) \)

 \(f \) is cont for all \(t \neq x \)

 \(\frac{\partial f}{\partial x} = \frac{1}{1+t^2} \) is cont for all \(t \neq x \)

 There exists a unique solution for all \(t \neq x \)

2) \(\frac{dx}{dt} = \frac{t-x}{3t-7x} = f(t,x) \)

 \(f \) is discont when \(x = \frac{3}{7}t \)

 \(\frac{\partial f}{\partial x} = \frac{4t}{(3t-7x)^2} \) is also discont when \(x = \frac{3}{7}t \)

 There exists a unique solution away from the line \(x = \frac{3}{7}t \).

 Along that line either existence or uniqueness fails.