ECO 6371.
Introduction to Quantitative Economics.
Fall, 2008.

Instructor: Santanu Roy, Professor of Economics, SMU.
Office: 301-L Umphrey Lee.
Tel: 214 768 2714
Fax: 214 768 1821
E-mail: sroy@smu.edu

Course web-page: http://smu.faculty.edu/sroy/index5.html
Office Hours: Mondays and Wednesdays, 10.00 - 11.30 AM & by appointment.
Lectures: Mondays and Wednesdays, 8.00-9.20 AM, Room-303, Umphrey Lee.

Teaching Assistant: Mr. Difei Geng (E-mail: difeig@smu.edu).

Objective:
This is a course on basic mathematics for a doctoral program in economics. The purpose of this course is to acquaint students with a set of fundamental mathematical results and techniques that:
- are useful for other core and field courses in the Ph.D. program in economics
- equip them with the ability to construct and analyze models
- enable them to read scientific papers in their areas of interest.

It is important to understand that there is high variation in the extent and kind of mathematics used in various sub-fields and approaches in economic research (including econometrics). It is impossible for a course of this kind to cover all the mathematical results used in all fields of economics - or even most of them. A course of this sort has to be selective and limited.

This course will focus on some basic results in linear algebra, real analysis and static optimization theory. The selection of topics is, to a large extent, motivated by constraints on the time available for the course, the typical background of the incoming Ph.D. students and the need to have a course that is self-contained. Therefore, the course will not be able to cover important topics such as probability or measure theory, dynamical systems and dynamic optimization techniques etc. Hopefully, other courses will cover such material.

Instead of presenting a haphazard glossary of large number of results, the course will aim to provide students with an understanding of the important results, the mathematical arguments behind them and their implications.
Reading:
There is no required textbook for this course.
Instead this course will be based on a highly acclaimed set of lecture notes by Prof. T. Mitra of Cornell University for a similar course. These notes will be circulated in class.

Recommended supplementary reading (optional):

Home Assignments:
Home assignments will be given out from time to time. It is extremely important that students work on these assignments on their own. Solutions will be circulated or discussed in class.

Examinations:
One midterm and one final exam.

Evaluation:
Final grade will be assigned on the following basis:
Midterm Exam (50%)
Final exam (50%).
Tentative List of Topics

I. Linear Algebra:
 Vectors: Vector Spaces, Linear Dependence, Rank and Basis, Inner Product and Norm.
 Matrices: Matrix Algebra, Rank, Inverse, Invertible and Non-Singular Matrix.
 Characteristic Values and Vectors: Trace and Determinant, Symmetric Matrices, Spectral Decomposition, Quadratic Forms & Characterization.

II. Real Analysis:
 Basic concepts: Norm, Distance, Open & Closed Sets, Convergence of Sequences, Compact Sets, Continuous functions, Existence of solutions to constrained optimization problems.
 Differential calculus: Partial derivatives, chain rule, Homogenous functions and Euler’s theorem, Inverse and Implicit function theorems
 Convex analysis: Convex sets, Separating hyperplane theorem, Continuous and Differentiable functions on convex sets, Concave functions, Quasi-concave functions.
 Set valued mappings & Continuity.
 Maximum theorem and Fixed point theorems.

III. Classical Optimization Theory:
 Unconstrained optimization: Necessary and sufficient conditions for Local and Global Maximum, the Method of Least Squares and the Envelope Theorem.
 Constrained Optimization: Necessary conditions for a local maximum, the Arithmetic Mean-Geometric Mean inequality, Sufficient conditions for a local and a global maximum.

IV. Modern Optimization Theory.
 Concave programming: Constrained Global Maxima and Saddle Points, the Kuhn-Tucker conditions, Constrained Local and Global Maxima.
 Quasi-concave programming: the Sufficiency Theorem of Arrow-Enthoven
 The Necessity Theorem of Arrow-Enthoven.
 Linear Programming: the Primal and Dual problems, Optimality Criterion, the Basic Duality Theorems, Complementary Slackness.
 Monotone comparative statics.
Other rules:

Disability Accommodations: Students needing academic accommodations for a disability must first contact Ms. Rebecca Marin, Coordinator, Services for Students with Disabilities (214-768-4557) to verify the disability and establish eligibility for accommodations. They should then schedule an appointment with the professor to make appropriate arrangements. (See University Policy No. 2.4.)

Religious Observance: Religiously observant students wishing to be absent on holidays that require missing class should notify their professors in writing at the beginning of the semester, and should discuss with them, in advance, acceptable ways of making up any work missed because of the absence. (See University Policy No. 1.9.)

Excused Absences for University Extracurricular Activities: Students participating in an officially sanctioned, scheduled University extracurricular activity should be given the opportunity to make up class assignments or other graded assignments missed as a result of their participation. It is the responsibility of the student to make arrangements with the instructor prior to any missed scheduled examination or other missed assignment for making up the work.