
Solving ODEs and DDEs with Residual Control

L.F. Shampine
Mathematics Department

Southern Methodist University
Dallas, TX 75275

U.S.A.
lshampin@mail.smu.edu

Abstract

We first consider the numerical integration of ordinary differential
equations (ODEs) with Runge–Kutta methods that have continuous ex-
tensions. For some methods of this kind we develop robust and inexpen-
sive estimates of both the local error and the size of the residual. We then
develop an effective program, ddesd, to solve delay differential equations
(DDEs) with time- and state-dependent delays. To get reliable results for
these difficult problems, the code estimates and controls the size of the
residual. The user interface of ddesd makes it easy to formulate and solve
DDEs, even those with complications like event location and restarts.

1 Introduction

The first part of this paper considers the numerical solution of a first order
system of ordinary differential equations (ODEs),

y′(t) = f(t, y(t))

on an interval a ≤ t ≤ b with given initial value y(a). Runge–Kutta (RK)
methods start with y0 = y(a) and on reaching yn ≈ y(tn), take a step of
size hn in the direction of b to form an approximate solution at tn+1 = tn +
hn. Popular codes estimate the error made in this step (the local error) and
adjust the step size so as to satisfy a tolerance specified by the user. A Runge–
Kutta formula provides an approximate solution only at tn+1, but it can be
supplemented with a continuous extension, an inexpensive approximation to
y(t) for tn ≤ t ≤ tn+1. This is important, even crucial, to applications like
plotting smooth graphs, event location, and solving delay differential equations
(DDEs). Control of the local error provides at most an indirect control of the
error of the continuous extension. Enright [2] points out advantages of a direct
control of the error of the continuous extension and suggests that this be done
by estimating and controlling the size of its defect (residual). It is especially

1

attractive when solving DDEs: As we explain below, this application of RK
methods requires an accurate numerical solution for all t. Also, discontinuities
in low order derivatives of the solution are typical. Because of this it is much
easier to estimate reliably the size of the residual than the local error. Higham
[7, 8] develops two kinds of schemes based on explicit RK formulas for which an
asymptotically correct estimate of the size of the defect can be obtained with a
single evaluation of f(t, y). Control of the size of the defect is natural in the sense
of backward error analysis, but users are more accustomed to control of local
error and in particular, find it easier to interpret error tolerances then. Here
we connect the two ways of assessing error by establishing a simple relationship
between the size of the residual and the local error for both kinds of schemes
studied by Higham. Enright and Higham consider only explicit RK methods
because implicit methods are generally thought to be inefficient for non-stiff
ODEs. As we explain below, when solving DDEs with RK formulas, yn+1 is
defined implicitly in important circumstances even when the formula is explicit.
For this reason we consider implicit RK methods, too.

We use the methods studied in the first part of this paper to develop an
effective way to solve a set of first order delay differential equations (DDEs)

y′(t) = f(t, y(t), y(d1), . . . , y(dk))

on an interval [a, b] with y(t) given for t ≤ a. It is assumed that all the delay
functions dj = dj(t, y(t)) are such that dj ≤ t. Early work considered only
functions of the form dj = t− τj with constant lag τj . Codes for such problems
typically use an explicit RK formula with continuous extension for the integra-
tion. By saving the information needed to evaluate the continuous extension
on each [tm, tm+1], an approximation is available for y(t) at any t prior to the
current point tn. If the step size hn is no bigger than the shortest lag, it is
straightforward to compute yn+1 with an explicit RK formula because all the
arguments t−τj of the formula are prior to tn. In some respects the solutions of
DDEs behave quite differently from the solutions of ODEs. Almost always there
is a discontinuity in a low order derivative at the initial point and it propagates.
Fortunately, for the class of DDEs studied in this paper, solutions smooth out
as the integration proceeds. This is one reason why a step size appropriate to
the solution might be much bigger than the shortest lag. If we try to use such
a step size, some of the terms y(t − τj) will represent values of the solution
in the span of the current step. These values are not yet known, so yn+1 is
defined implicitly. Some codes restrict the step size so as to have an explicit
recipe, but this is not an option when solving problems with more general delay
functions. As illustrated by examples in §5, some DDEs have points t where
t − dj(t, y(t)) vanishes. A more fundamental difficulty is that when the delays
are state-dependent, we must know the solution on [tn, tn+1] in order to evaluate
the delay functions dj(t, y(t)) used in the RK formula to compute the solution
on [tn, tn+1].

At the present time no method for solving DDEs with time- and state-
dependent delays is clearly best. A key issue is how to deal with the propagation

2

of discontinuities. Some of the most effective codes track discontinuities, but
this is expensive and it is difficult to locate discontinuities accurately when the
delay functions are state-dependent. Instead of tracking discontinuities, some
codes rely upon standard algorithms for the estimation and control of the local
error for ODEs to recognize and deal with them. Underlying these algorithms is
an assumption that the solution is sufficiently smooth. This may not be the case
when solving DDEs, so the reliability of results obtained in this way is question-
able. We present here a Matlab program, ddesd, for solving DDEs with time-
and state-dependent delays that does not track discontinuities. To compute so-
lutions reliably in the presence of discontinuities in low order derivatives of the
solution, it estimates and controls the size of the defect. Specifically, an explicit
Runge–Kutta formula and continuous extension developed in the first part of
this paper is used to obtain an inexpensive estimate of the size of the defect
that is meaningful even when the solution is not smooth. When the solution is
sufficiently smooth, the scheme also provides a control of the local error. ddesd
shares a powerful and convenient user interface with dde23. It has performed
well on a large collection of DDEs taken from the literature.

2 Residual Control for ODEs

Suppose that the integration of a first order system of ODEs

y′(t) = f(t, y(t))

has reached tn where we have yn ≈ y(tn). The local solution u(t) is defined
there by

u′ = f(t, u), u(tn) = yn

In taking a step of size hn from tn to obtain yn+1, the local error of a Runge–
Kutta method is

len = u(tn + hn) − yn+1 (1)

This error is estimated by taking the step with two formulas, one producing an
approximation yn+1 with local error O(hp+1

n) and another producing y∗
n+1 with

local error O(hp+2
n). It is then immediate that

y∗
n+1 − yn+1 = len + h.o.t.

Here “h.o.t.” is “higher order terms”. At each step the codes adjust hn so that
a norm of the local error is no bigger than a tolerance τ . For efficiency, the
codes try to use the largest step size that will deliver the specified accuracy.
Although it is the error of the lower order formula that is estimated, popular
codes advance the integration with the higher order result (local extrapolation)
because it is believed to be more accurate.

Early codes reduced the step size so as to produce answers at specified output
points, but later it was learned how to obtain continuous extensions. These
are functions p(t) computed using the stages formed when taking a step, and

3

perhaps some additional stages, that approximate u(t) throughout [tn, tn+1].
The ones used in practice are polynomials, but other kinds of functions have
been used for theoretical purposes. Continuous extensions are all but necessary
for locating events and solving DDEs. Clearly it is of great practical importance
that control of the error at the end of a step provide some control of the error in
the span of the step. Early theoretical results of this kind are found in Stetter
[18].

In the approach just outlined, we control the error made in stepping from
tn to tn+1 and supplement the formula with a continuous extension valid for
all of [tn, tn+1]. Enright [2] suggests that we focus on the continuous exten-
sion and control its error directly. Polynomial continuous extensions on the
various [tn, tn+1] form in aggregate a piecewise polynomial function S(t) that
approximates y(t) on all of [a, b]. Enright proposes that the size of the defect
(residual),

r(t) = S′(t) − f(t, S(t))

be controlled. In a backward error analysis we regard the computed S(t) as the
exact solution of the ODE

S′ = f(t, S) + r(t)

and we ask whether this ODE is close to the one given, i.e., whether the residual
is small. This approach to the control of error has been fundamental in the
solution of linear algebraic equations. Though it has not yet seen much use in
solving initial value problems for ODEs, two effective codes for solving boundary
value problems (BVPs), namely MIRKDC [5] and bvp4c [9], use it. It is used
in the DDE solver DDVERK [3] and in the DDE solver ddesd that we present
in this paper.

At each step we can evaluate the residual wherever we like and use these
values to estimate the size of the residual over the span of a step. In his study
of this task, Enright makes an important observation: If p(t) is the continuous
extension on [tn, tn+1], then on this interval

r(t) = [p′(t) − u′(t)] + [f(t, u(t)) − f(t, p(t))]

For Lipschitzian f , the second term on the right is of the same order of accuracy
as u(t) − p(t). Generally p(t) approximates u(t) to higher order than p′(t)
approximates u′(t). Assuming that this is so, Enright points out that

r(t) = − [u′(t) − p′(t)] + h.o.t.

This insight and the form he adopts for the continuous extension then provide
guidance for estimation of a norm of the residual. Unfortunately, he does not
obtain estimates that are asymptotically correct. Higham [7] shows how to
accomplish this. His investigation is based on an approach [13, 6] that we took
to constructing continuous extensions of RK methods. Here we study further
consequences of the approach, so it is convenient to review it briefly.

4

In the course of taking a step, RK methods produce approximations to y(t)
at a number of points in [tn, tn + hn]. Generally these approximations are of
low order, but for some methods there are m distinct points {ξi} where the
approximations ui satisfy

ui − u(ξi) = O(hq+1
n) i = 1, . . . , m

In addition, the methods form u′
i = f(ξi, ui) for i = 1, . . . , r with r ≤ m. For

Lipschitzian f , these quantities satisfy

u′
i − u′(ξi) = O(hq+1

n), i = 1, . . . , r

The continuous extension p(t) on [tn, tn+1] is defined as the unique polynomial
of degree less than or equal to m+r−1 that interpolates these approximations:

p(ξi) = ui, i = 1, . . . , m
p′(ξi) = u′

i, i = 1, . . . , r
(2)

If we require that ξ1 = tn, u1 = yn, ξr = tn+1, and ur = yn+1, these continu-
ous extensions form a piecewise polynomial approximation S(t) to y(t) that is
C1[a, b].

We analyzed the error of these continuous extensions by introducing the
polynomial Q(t) that interpolates the local solution:

Q(ξi) = u(ξi), i = 1, . . . , m
Q′(ξi) = u′(ξi), i = 1, . . . , r

With this polynomial we write

u(k)(t) − p(k)(t) =
[
u(k)(t) − Q(k)(t)

]
+

[
Q(k)(t) − p(k)(t)

]
(3)

It is shown in [13] that the first term, the “interpolation error” is O(hm+r−k
n) and

the second, the “data error”, is O(hq+r−k
n). In [13, 6] we studied two situations

which allow us to come to a much better understanding of the behavior of the
local error, namely when the interpolation error dominates and when the data
error dominates. In [7] Higham studies residual control when the interpolation
error dominates. Here we show that the schemes he investigates are even more
attractive by relating their residual to their local error. Later [8] he considered
methods for which the data error dominates. We also consider such methods
and again show how to relate the residual to the local error.

2.1 Interpolation Error Dominates

In this section we suppose that the interpolation error dominates in (3) so that

u(t) − p(t) = O(hm+r
n)

and
r(t) = − [u′(t) − p′(t)] + h.o.t. = O(hm+r−1

n)

5

In these circumstances Shampine and Higham show that

u(t) − p(t) = δ(σ)
u(m+r)(tn)
(m + r)!

hm+r
n + h.o.t.

u′(t) − p′(t) = δ′(σ)
u(m+r)(tn)
(m + r)!

hm+r−1
n + h.o.t.

The function δ(σ) here is a polynomial in a variable σ defined by t = tn + σhn

and values σi defined by ξi = tn + σihn, namely

δ(σ) =
r∏

i=1

(σ − σi)2
m∏

i=r+1

(σ − σi)

These interpolants are interesting because to leading order, the way that the
error behaves in the span of a step is known a priori. For a given interpolant,
Higham suggests that we find points σ∗ where the polynomial δ′(σ) has its
maximum magnitude on [0, 1]. Correspondingly, we can work out

C1 = max
0≤σ≤1

|δ′(σ)| = |δ′(σ∗)|

By evaluating the residual at one of these points, we obtain an asymptotically
correct estimate of a weighted maximum norm of the residual:

‖r‖ = max
0≤σ≤1

‖r(tn+σ)‖
= max

0≤σ≤1
‖u′(tn+σ) − p′(tn+σ)‖ + h.o.t.

= |δ′(σ∗)| ‖u
(m+r)(tn)‖
(m + r)!

hm+r−1
n + h.o.t.

= ‖r(tn+σ∗)‖ + h.o.t.

In this we use the standard notation tn+σ = tn + σhn. In contrast to other
continuous extensions, a single, judiciously-chosen sample allows us to ascertain
the behavior of the residual on the whole span of the step, at least to leading
order.

Control of the residual is a robust and meaningful measure of the error of
an integration, but there is no doubt that we would prefer a robust measure of
the error in the solution itself. We now show that such a measure is to hand.
For a given interpolant it is straightforward to work out

C2 = max
0≤σ≤1

|δ(σ)|

With this definition and the expression for the error in the solution we obtain

‖u − p‖ = max
0≤σ≤1

‖u(tn+σ) − p(tn+σ)‖

= C2
‖u(m+r)(tn)‖

(m + r)!
hm+r

n + h.o.t.

6

It is convenient to extend the concept of local error to the span of the step with
the definition

Len(tn+σ) = u(tn+σ) − p(tn+σ)

Using the corresponding expression for the error in the first derivative of the
solution, it is now easy to see that

‖Len‖ = hn
C2

C1
‖r(tn+σ∗)‖ + h.o.t.

From this we see that we can obtain an asymptotically correct approximation of
the maximum error in the span of a step by a single evaluation of the residual.

Conventionally codes control the difference between the local solution and
a numerical approximation at the end of the step. With continuous extensions
like these, we find that we can control this difference throughout the span of the
step. From the point of view of backward error analysis, a numerical solution
with a small residual is a good solution. Nevertheless, users are more familiar
with control of the local error and so find it easier to appreciate the role of
tolerances. We see now that with these continuous extensions, we can control
a more familiar quantity and still control the residual. We also note that by
construction, these methods have a maximum local error that is of lower order
than the error in the value yn+1 used to advance the integration. Accordingly,
controlling the maximum local error is somewhat like local extrapolation.

One of Higham’s examples is a four-stage, fourth-order explicit RK formula
with a cubic Hermite interpolant. For this interpolant, m = 2 = r and ξ1 = tn,
ξ2 = tn+1. For such a formula, q = 4 and the continuous extension is accurate
to O(h4

n). By construction the residual vanishes at both ends of the step, but
the expression

δ′(σ) = 2σ(σ − 1)(2σ − 1)

shows that to leading order, it also vanishes at the middle of the step. The
value of the residual at any other point can be used to obtain an asymptotically
correct approximation of ‖r‖. Higham observes that the maximum magnitude
of this polynomial is attained at

σ∗
1 = 1/2 −

√
3/6, σ∗

2 = 1/2 +
√

3/6 (4)

where C1 =
√

3/9 and proposes that the residual be evaluated at one of these
points. We add to this an easy calculation with δ(σ) that results in C2 = 1/16.
Any fourth order RK formula might be used with this continuous extension.
Higham [7] gives some numerical results when the basic formula is the explicit
four-stage formula known as the “3/8 formula”. For ddesd we have preferred
the “classic formula”.

2.2 Data Error Dominates

In [6] we considered some formulas and continuous extensions for which it is pos-
sible to relate the local error at the end of the step to the local error throughout

7

the step. Here we connect this to the residual and use it to obtain an asymp-
totically correct estimate of the error. Because few of the well-known formulas
have this desirable property, Higham [8] considers how to supplement a natural
continuous extension so as to obtain another continuous extension for which an
asymptotically correct estimate of the residual can be obtained with a single
sample. As in §2.1, we show that the local error is related to the residual in a
simple way. All the papers that we have cited assume that an explicit RK for-
mula is used, but it is perfectly possible to use an implicit formula. As outlined
in §1, implicit formulas are more attractive when solving non-stiff DDEs than
ODEs. We have written versions of ddesd that use methods of the form studied
in this section that are based on implicit RK formulas.

One of the examples of [6] supposes that a step is taken from tn to tn+1 as two
half steps with a formula of order 4. A number of authors have studied formulas
that can be viewed as having this form plus some other stages that are used in
a fifth order formula for estimating the local error. Here we simply assume that
a formula of order 4 is chosen and discuss how to estimate the residual and the
local error throughout the span of the step. We have experimented with this
method when the fourth order formula is the implicit Simpson (3 point Lobatto)
formula used by bvp4c.

A continuous extension for such a formula is obtained by interpolation with
m = 3 = r and ξ1 = tn, ξ2 = tn+1/2, ξ3 = tn+1. In [6] we showed that the quintic
Hermite interpolant p(t) approximates the local solution and its derivatives as

u(k)(t) − p(k)(t) =
[
A

(k)
2 (t)/2 + A

(k)
3 (t)

]
len + h.o.t. (5)

The fundamental interpolating polynomials A2(t) and A3(t) are given in [13].
When k = 0 in (5),

u(tn + σhn) − p(tn + σhn) = −σ2(−60σ2 + 50σ − 15 + 24σ3) len + h.o.t. (6)

The polynomial multiplying len is plotted as Fig. 3.2 in [6]. As seen in the
figure, the error increases smoothly from zero at tn to its maximum of ‖len‖ at
tn+1, i.e., ‖Len‖ = ‖len‖ + h.o.t.

In [13, 6] we made no use of the case k = 1 in (5), namely

u′(t) − p′(t) = 120σ(1 − σ)(σ − 1/2)2 len/hn + h.o.t. (7)

However, we now appreciate that we can use this result to conclude that

r(tn+σ) = −120σ(1 − σ)(σ − 1/2)2 len/hn + h.o.t.

An interesting fact about this continuous extension is that to leading order, its
residual is of one sign. To leading order, the residual vanishes at {0, 1/2, 1}, but
sampling the residual at any other point in the interval provides an asymptoti-
cally correct estimate of the local error. Just as Higham did for the example we
studied in §2.1, we could find a point σ∗ where the polynomial in this expression

8

has its maximum magnitude on [0, 1]. With it we can obtain an asymptotically
correct estimate of the size of the residual with a single sample:

‖r‖ = ‖r(tn+σ∗)‖ + h.o.t.

After working out

C3 = max
0≤σ≤1

| − 120σ(1 − σ)(σ − 1/2)2|

we also have

‖len‖ = hn ‖r(tn+σ∗)‖/C3 + h.o.t. = ‖Len‖ + h.o.t.

Because the local error at the end of the step is the maximum local error in the
span of the step, we obtain an asymptotically correct estimate of the maximum
local error using just one sample of the residual. In contrast to the formulas of
§2.1, the integration is advanced with a result of the same order of accuracy as
the error that we control.

We illustrate Higham’s approach [8] to robust defect control and the addi-
tional properties that we have observed with the two stage Radau IIA method

yn+1/3 = yn + hn

[
5
12

fn+1/3 − 1
12

fn+1

]

yn+1 = yn + hn

[
3
4
fn+1/3 +

1
4
fn+1

]

This is a third order formula, so the cubic Hermite interpolant to value and
slope at the two ends of the step is accurate to O(h4

n) throughout the span of
the step. Unfortunately, it does not have the properties we want. To get a
continuous extension that does, Higham uses p(t) to construct some additional
approximations to the first derivative of the local solution and interpolates them,
too. For the present formula, we need only one such approximation, which we
obtained for our experiments by first defining yn+2/5 = p(tn+2/5) and then
evaluating fn+2/5. The continuous extension studied by Higham is the unique
quartic polynomial H(t) such that

H(tn) = yn, H(tn+1) = yn+1

and
H ′(tn) = fn, H ′(tn+2/5) = fn+2/5, H ′(tn+1) = fn+1

For this interpolant his analysis shows that

u(tn+σ) − H(tn+σ) = −15σ2(σ − 2/3)(σ − 6/5) len + h.o.t.

Inspection of the polynomial factor shows that it has its maximum magnitude
of 1 at the end of the step, which is to say that ‖Len‖ = ‖len‖ + h.o.t. This
interpolant has the same order of accuracy as the cubic interpolant p(t), but

9

with it, we know how the error is distributed throughout [tn, tn+1]. In particular,
controlling ‖len‖ controls the local error throughout the step. Higham goes on
to derive an expression for the residual which in this instance is

r(tn+σ) = −60σ(σ − 2/5)(σ − 1) len/hn + h.o.t.

Higham was interested only in controlling the residual, but just as with our other
examples, we can obtain an asymptotically correct estimate of the local error
with one sample of the residual: We can find a point σ∗ where the polynomial
in this expression has its maximum magnitude on [0, 1] and work out

C4 = max
0≤σ≤1

| − 60σ(σ − 2/5)(σ − 1)|

Then
‖len‖ = hn ‖r(tn+σ∗)‖/C4 + h.o.t. = ‖Len‖ + h.o.t.

3 Residual Control for DDEs

We now consider how to use the methods of §2 to solve DDEs of the form

y′(t) = f(t, y(t), y(d1), . . . , y(dk)) (8)

on an interval [a, b] with y(t) given for t ≤ a. We assume that all the delay
functions dj = dj(t, y(t)) are such that dj ≤ t. The DDE solvers ARCHI [12],
DKLAG6 [1], and DDVERK [3] have much in common. They are all based on
explicit RK formulas with continuous extensions. They allow time- and state-
dependent delays. They provide for small and vanishing delays. In addition,
they all accept problems of neutral type. These are problems of the form

y′(t) = f(t, y(t), y(d1), . . . , y(dk), y′(dk+1), . . . , y′(dm))

with dj < t for j = k + 1, . . . , m. Neutral problems are much harder to solve
because discontinuities in y(t) do not smooth out as the integration advances.
Our solver, ddesd, has all the properties mentioned for these solvers but one—it
does not accept problems of neutral type. As we shall see, its algorithms take
important advantage of this restriction.

Most DDEs have a discontinuity in the first derivative at the initial point
because the derivative of the history is not equal to the value given by the dif-
ferential equation. We do not allow neutral problems and we further restrict the
class of problems that we do allow by assuming that this initial discontinuity is
smoothed as the integration progresses. Moreover, we assume that any discon-
tinuity in the first derivative that occurs after the start can be handled as the
initial point of a restart. As we shall see in §4, the user interface of ddesd makes
restarts convenient. With these assumptions, we have a solution that is C1 for
each integration and correspondingly, we insist that our numerical solution also
be C1.

10

We do not track discontinuities in ddesd. This is practical because of the
restrictions we place on the class of problems accepted by the solver and algo-
rithmic developments that we discuss below. The users of ARCHI and DKLAG6
have the option of not tracking discontinuities. If the option is specified, the
solvers rely upon the usual error estimation and step size adjustment algorithms
for ODEs to deal with them. In this it is assumed that estimating the local error
by comparing the results of a pair of formulas will recognize a discontinuity of
low order and lead to a step failure. Standard step size selection algorithms
take this possibility into account and deal with it in a reasonably efficient way.
DDVERK detects discontinuities by means of a residual error control. Sus-
pected discontinuities of low order are located and special interpolants are used
when stepping over a discontinuity. We go further and rely entirely on resid-
ual control. Our aim is to minimize the need for a smooth solution. As with
conventional algorithms for local error control, our algorithms for error estima-
tion and step size adjustment deal effectively with isolated discontinuities. We
expect discontinuities to be isolated because we expect smoothing. DDVERK
must give more attention to this matter because it allows neutral problems for
which discontinuities are not smoothed as the integration progresses.

When solving DDEs, it is important that we control the error everywhere be-
cause the delay terms might require evaluating the numerical solution anywhere
prior to the current t. Because we do not track discontinuities, it is especially
important that we have a robust measure of the error. In ddesd we use the
method studied in §2.1, the classic four-stage, fourth-order explicit RK formula
with cubic Hermite interpolation as continuous extension. One of the things to
be appreciated about solving DDEs is that when the solution is defined implic-
itly, evaluating the formula implicitly involves a good many stages. The implicit
formulas of §2.2 are attractive because they involve relatively few stages for a
given order. Later we discuss more fully the evaluation of the formulas and
explain our choice.

For the formulas of §2 we are able to obtain an asymptotically correct esti-
mate of ‖r‖ and ‖Len‖ with a single evaluation of the residual. Certainly the
connection we established between the residual and the local error is important,
but in the present context we emphasize the residual because it is well-defined
no matter how smooth the solution of the DDE. All the formulas we have con-
sidered have

‖Len‖ = hnC‖r‖ + h.o.t. = hnC‖r(xn + σ∗hn)‖ + h.o.t.

for a known constant C. DDVERK and the BVP solvers MIRKDC and bvp4c
control ‖r‖. Though a perfectly reasonable approach to error, it is less familiar
than control of ‖len‖. We attempt to get the advantages of both in ddesd. We
control hn‖r‖ at each step. If all is going well, this also controls ‖Len‖ and it
is easy to interpret the tolerances. If not, we still have a meaningful control
of error. For the method of ddesd the constant C is rather small, namely√

3/144, meaning that the solver is quite conservative when the asymptotic
approximations are applicable.

11

By default Enright and Hayashi estimate the size of the residual in DDVERK
by evaluating the residual at a single point. This point is judiciously chosen, but
it does not result in an asymptotically correct estimate for all problems. There
is an option for doubling the number of samples to get a more reliable, but still
not asymptotically correct, estimate. There is also an option for using a more
expensive continuous extension for which an asymptotically correct estimate
can be computed with one sample of the residual. All the continuous extensions
we have considered provide an asymptotically correct estimate of the size of
the residual with a single sample. This is more favorable than the schemes of
DDVERK, but we should be more cautious in ddesd because we do not track
discontinuities. An obvious way to enhance the reliability of the estimate is to
evaluate the residual at both the points (4) where the residual asymptotically
has its maximum magnitude and estimate the maximum magnitude of each
component of the residual by

rmax = max(|r(tn + σ∗
1hn)|, |r(tn + σ∗

2hn)|) (9)

To get a credible estimate of the size of the residual when asymptotic results
are poorly applicable, we should represent the residual somehow over the whole
span of the step. Kierzenka and Shampine [9] estimate an L2 norm of the
residual in bvp4c with a Lobatto quadrature formula. Sufficiently many nodes
(samples of the residual) are used that the estimate is asymptotically correct.
An integral measure of size and a moderately high order quadrature formula
furnish a credible estimate when the residual is not very smooth or the step size
is rather large. We have experimented with such an estimate in conjunction with
the first implicit formula of §2.1. The circumstances are less favorable than those
of bvp4c with the consequence that the estimate is relatively expensive in terms
of evaluations of the residual. The second implicit formula of §2.1 has a lower
order and a residual of one sign, making it possible to obtain an asymptotically
correct estimate of an L1 norm with fewer samples. Though interesting, the
quadrature formula is a much less plausible estimate of an L1 norm when the
residual might change sign.

In ddesd we obtain a plausible estimate of the maximum of |r(tn + σhn)|
on [0, 1] by interpolating r(tn + σhn) for 0, σ∗

1 , σ∗
2 , 1 with a cubic polynomial

q(σ) and finding its maximum magnitude. Because the residual vanishes at
the end points of the interval, the quadratic q′(σ) has only real roots. This
makes it straightforward to compute the roots in (0, 1) and evaluate q(σ) there
to obtain the maximum of |q(σ)|. The scheme is practical in Matlab because
the computation can be vectorized over the components of the residual. We
experimented with it, but came to prefer something much simpler and more
cautious. If L1(σ) and L2(σ) are the fundamental Lagrangian interpolating
polynomials associated with σ∗

1 and σ∗
2 , respectively, then

|q(σ)| = |r(tn + σ∗
1hn)L1(σ) + r(tn + σ∗

2hn)L2(σ)| ≤ C5 rmax

Here rmax is defined by (9) and

C5 = max
0≤σ≤1

|L1(σ)| + max
0≤σ≤1

|L2(σ)| ≈ 2.1342

12

At each step ddesd uses this bound in controlling the size of hn‖r‖ in a weighted
L∞ norm. If the asymptotic results are applicable, the bound is about twice as
big as the actual norm, but we regard this as an acceptable price for a plausible
and inexpensive bound on the size of the residual when the asymptotic results
are not applicable.

The fact that a formula might be implicit complicates greatly the solution of
DDEs. It is usual to extrapolate the continuous extension on the preceding step
to the current one to get a tentative solution there. With it the delayed terms
can be evaluated and an improved solution computed. Each iteration of this
kind is rather expensive in terms of function evaluations. That is one reason
we preferred a formula of relatively few stages, and correspondingly low order,
in ddesd. Another is that in the Matlab problem solving environment it is
usual to interpret solutions graphically and so compute solutions to only modest
accuracy. The other codes that we have cited iterate until the implicit formula
is evaluated to a specified tolerance. This is complicated by state-dependent
delays and the potential for discontinuities in the span of the step. In ddesd we
have preferred the simpler approach of a fixed number of corrections. A difficulty
with a straightforward implementation of iteration is that stages are evaluated
with a previous iterate, hence the residual may not be exactly zero at the end
points. We insist on this so as to obtain a numerical solution S(t) ∈ C1[a, b].

After experimenting with IRKs we decided in favor of an explicit formula
because most steps are not implicit. A step from tn begins by extrapolating the
solution from the preceding step to get P(t) ≈ y(t). As each stage is formed,
we must evaluate the delay functions for a value of t and P(t). Although we
require that each dj(t, y(t)) ≤ t, it is possible that some dm(t,P(t)) > t. If this
should happen, we reduce the value of dm to t so as to avoid going into the
future. If dj(t,P(t)) ≤ tn for all j = 1, . . . , k, we treat the step as explicit, i.e.,
we do not iterate. Because this decision is made using an approximate solution,
it is possible that we treat a step as explicit when it should have been treated
as implicit. If any dm(t,P(t)) > tn, we treat the step as implicit and iterate
exactly once.

We define the numerical solution S(t) so that its residual is exactly zero at
both ends of the step. We sample the residual at two other points to compute an
asymptotically correct bound on its weighted maximum norm over the span of
the step. A considerable virtue of our approach is that we compute a meaningful
estimate of the size of the residual, no matter how S(t) is obtained. This
important point deserves further comment: When the delay functions are state-
dependent, the locations of discontinuities depend on the approximate solution.
It is usual that these functions are evaluated using a previous iterate, but we
evaluate them using the accepted S(t), hence estimate the size of the residual
of S(t) itself.

13

4 User Interface

The user interface for dde23 is convenient and powerful, so we have provided
ddesd with an interface that is nearly identical. Indeed, it is possible to replace
dde23 in a program by simply changing the name of the solver to ddesd. Details
of the design of dde23 are found in [16, 17], so here we discuss only a few issues
special to ddesd.

dde23 solves only problems with constant lags τj so that dj = t − τj for
j = 1, . . . , k. A convenient way to describe such delays is to provide the τj

in an array lags, and that is done in dde23. For the general delay functions
dj(t, y(t)) allowed by ddesd it is more natural to describe the delays by means
of a function, and that is the usual input for ddesd. In Matlab an input
argument can have more than one data type. By exploiting this, ddesd allows
users to input an array of lags just as for dde23 and internally evaluates the
corresponding delay functions.

The solvers return the solution in the form of a structure. In this structure
is all the information needed to evaluate the solution through the last point
reached in the integration. Fields of the structure contain the mesh selected
by the solver and the solution on this mesh. If these answers are insufficient,
an auxiliary function deval can be used to evaluate the solution anywhere in
the interval of integration. As seen in Example 4.4 of Oberle and Pesch [11], it
is sometimes necessary to compute the first derivative of the solution. Values
of the first derivative at mesh points are available as a field in the solution
structure. This is usually satisfactory for dde23, but ddesd takes relatively
long steps, a fact that may be obvious in a phase plane plot. Accordingly, we
have added to deval the option of evaluating the first derivative of the solution
computed by ddesd. (Because the same interpolant is used by dde23 and the
BVP solver bvp4c, we made the option available for these solvers, too.)

dde23 tracks discontinuities. To facilitate this, it has an option called Jumps
that allows a user to specify points where it is known that the solution has a
low order discontinuity. This is not a natural option for ddesd, so if a user
sets it, the solver returns with a message saying that the problem should be
solved by restarting at each of the points specified by the option. The design
also provides for event location. Often such problems involve restarting the
integration after locating an event. Let us, then, briefly review how restarts are
handled in the design of dde23. In the first instance, the history can be specified
as either a constant vector or as a function. Either way, this information is
saved in the solution structure along with the numerical solution. All the user
has to do on a restart is provide the solution structure as the history argument.
This structure is extended on output to the last point reached in the current
integration. Though the implementation is somewhat complicated as the solver
sorts through all the possibilities, the design makes restarts very easy for a user.

Chapter 4 of the text [17] discusses the solution of DDEs with constant lags.
It provides examples showing how to use dde23 and the associated Instructor’s
Manual contains programs for solving the computational exercises. We have
solved all these problems with ddesd. This was almost completely straightfor-

14

ward. Naturally the programs illustrating use of the Jumps option had to be
recoded as explained above. A good many of the programs plot the solution
at mesh points. Because ddesd may take longer steps than dde23, we some-
times had to use deval to get answers on a mesh fine enough to get a smooth
graph. This collection of problems furnished a good test of ddesd for DDEs
with constant lags. In particular, it tested the solver on problems that involve
discontinuities, event location, and restarting.

Each step in ddesd is more expensive than in dde23, but the method is of
higher order. Because of this it is not surprising that dde23 is generally the
more efficient at default tolerances, but ddesd is the more efficient at stringent
tolerances. To enhance the reliability of the algorithm in ddesd for handling
discontinuities, it has been made rather conservative when all is going well.
Tracking discontinuities in dde23 is both efficient and effective for this class of
DDEs. It also provides a sounder theoretical basis for this solver. For DDEs
with constant lags, our experience is that dde23 is generally to be preferred
over ddesd. It is useful to have an alternative to dde23, but that is not why
we developed ddesd. Our goal was to develop a Matlab program to solve
time– and state–dependent DDEs. The next section reports some numerical
experiments with such problems.

5 Numerical Experiments

We have solved many time– and state–dependent DDEs from the literature.
The results were plausible in all cases and agreed with analytical solutions and
reference values as well as might be expected for the tolerances specified. Here
we report some details for a few of the test problems for DDE solvers assembled
by Enright and Hayashi [4]. The set includes neutral problems which, of course,
we could not solve with ddesd, leaving 10 problems in four classes for our
experiments. Enright and Hayashi use a single error tolerance on the residual.
For ddesd we vary the relative error tolerance RelTol and take the absolute
error tolerance AbsTol equal to RelTol ×10−3. The default tolerances in ddesd
then correspond to RelTol equal to 10−3.

In our first experiment we tested whether the solver is doing what it is
supposed to do, namely controlling the size of the residual. We solved each of the
ten problems for relative error tolerances 10−3, 10−4, 10−5, 10−6 and computed
the maximum over all steps of the ratio of hn‖r‖ to the tolerance. To compute
this statistic we approximated ‖r‖ using 20 equally spaced samples in [tn, tn +
hn]. ddesd kept the size of the residual well below the specified tolerance in
every case. Indeed, the worst performance was seen in solving C2 for which the
residual overruns were 0.82, 0.69, 0.85, 0.83, respectively. For all other problems
and tolerances, the maximum residual overrun was 0.62 and the median was
0.30. The results of this experiment inspire some confidence that when ddesd
returns a numerical solution, the solution will satisfy the differential equations
with a residual no larger than the specified tolerance.

Class A consists of two problems with constant lags, so they can be solved

15

Ssteps Fsteps Fevals Time
dde23 238 76 943 0.24
ddesd 286 62 2087 1.0

Table 1: Statistics for problem A1.

Ssteps Fsteps Fevals Time
dde23 208 62 811 0.19
ddesd 276 2 1669 0.89

Table 2: Statistics for problem A2.

with dde23 as well as ddesd. We solved them with both programs using default
tolerances. Plotting the numerical solutions together showed that the solvers
produced the same solutions to graphical accuracy. By setting the Stats option
to on we obtained the results displayed in Table 1 and Table 2. In these tables
Ssteps is the number of successful steps, Fsteps is the number of failed attempts
to take a step, Fevals is the number of derivative evaluations, and Time is the
run time of the second invocation of the program.

Some of the problems in the test set have analytical solutions. B2 consists
of a single DDE,

y′(t) = g(y(t/2)) − y(t)

Here g(s) = 1 if s < 0 and g(s) = −1 if s ≥ 0. A discontinuous function of
the delayed term presents obvious difficulties for a solver. The DDE is to be
integrated over [0, 2 log(66)] with initial value y(0) = 1. There is no history
function because the delay vanishes at t = 0, another difficulty for a solver. The
solution given in [4] is piecewise smooth on the interval of integration, but there
are two discontinuities of very low order. To exemplify their testing program,
Enright and Hayashi [4] present results for DDVERK applied to the A1 problem.
In Table 3 we present similar results for ddesd applied to the B2 problem.
The results they report are not directly comparable to ours because the codes
do not have the same goals. We report the overrun in the residual, ResO, as
explained above. Using the analytical solution we similarly compute and report
the overrun in the global error, ErrO. These two quantities are the equivalents
for ddesd of the quantities “MAX DEF” and “MAX GLB ERR” reported by
Enright and Hayashi for DDVERK. As it happens, the values 0.62, 0.60 for the
residual overrun are the biggest of our first experiment if we exclude those of
C2. It must be kept in mind that global error overruns depend not just on how
well the residual is controlled, but also on the stability of the problem itself.

D1 is a system of two equations with a state-dependent delay. The DDEs

y′
1(t) = y2(t)

y′
2(t) = −y2(e(1−y2(t))) y2

2(t) e(1−y2(t))

16

RelTol Ssteps Fsteps Fevals ResO ErrO
10−3 55 22 464 0.62 0.89
10−4 83 27 663 0.60 0.90
10−5 128 37 988 0.30 1.5
10−6 201 43 1463 0.35 9.9

Table 3: Statistics for problem B2.

RelTol Ssteps Fsteps Fevals ResO ErrO
10−3 37 1 235 0.13 0.50
10−4 52 0 357 0.22 1.1
10−5 90 0 605 0.28 2.2
10−6 158 0 1041 0.31 3.5

Table 4: Statistics for problem D1.

are to be solved on [0.1, 5] with history given by the analytical solution y1(t) =
log(t), y2(t) = 1/t. In addition to the difficulty of a state-dependent delay, this
delay vanishes in the course of the integration, specifically at t = 1. Table 4
shows how ddesd performed in solving D1 for a range of tolerances.

6 Conclusions

Delay differential equations with time- and state-dependent delays are difficult
to solve numerically and at this time, no approach is obviously the best. We
have developed robust and inexpensive estimates of both the local error and the
size of the residual for some Runge–Kutta methods with continuous extensions.
Using an explicit method of this kind, we have developed a program, ddesd,
to solve DDEs that is based on control of the size of the residual. The user
interface of ddesd makes it easy to formulate and solve DDEs, even those with
complications like event location and restarts. The program has performed well
on a wide selection of problems from the literature.

References

[1] S.P. Corwin, D. Sarafyan, and S. Thompson, DKLAG6: a Code Based on
Continuously Imbedded Sixth Order Runge–Kutta Methods for the Solu-
tion of State Dependent Functional Differential Equations, Appl. Numer.
Math. 24 (1997) 319–333.

[2] W.H. Enright, A New Error–Control for Initial Value Solvers, Appl. Math.
Comput. 31 (1989) 588–599.

17

[3] W.H. Enright and H. Hayashi, A Delay Differential Equation Solver Based
on a Continuous Runge–Kutta Method with Defect Control, Numer. Alg.
16 (1997) 349–364.

[4] W.H. Enright and H. Hayashi, The evaluation of numerical software for de-
lay differential equations, in: R.F. Boisvert, ed., The Quality of Numerical
Software: Assessment and Enhancement, Chapman & Hall, London, 1997,
pp. 179–192.

[5] W.H. Enright and P.H. Muir, Runge–Kutta Software with Defect Control
for Boundary Value ODEs, SIAM J. Sci. Comput. 17 (1996) 479–497.

[6] I. Gladwell, L.F. Shampine, L.S. Baca, and R.W. Brankin, Practical As-
pects of Interpolation in Runge–Kutta Codes, SIAM J. Sci. Stat. Comput.
8 (1987) 322–341.

[7] D.J. Higham, Robust Defect Control with Runge–Kutta Schemes, SIAM
J. Numer. Anal. 26 (1989) 1175–1183.

[8] D.J. Higham, Runge–Kutta Defect Control using Hermite–Birkhoff Inter-
polation, SIAM J. Sci. Stat. Comput. 12 (1991) 991–999.

[9] J. Kierzenka and L.F. Shampine, A BVP Solver Based on Residual Control
and the Matlab PSE, ACM Trans. Math. Softw., 27 (2001) 299–316.

[10] Matlab 6, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760,
2000.

[11] H.J. Oberle and H.J. Pesch, Numerical Treatment of Delay Differential
Equations by Hermite Interpolation, Numer. Math. 37 (1981) 235–255.

[12] C.A.H. Paul, A user-guide to ARCHI, Numer. Anal. Rept. No. 283, Maths.
Dept., Univ. of Manchester, UK, 1995.

[13] L.F. Shampine, Interpolation for Runge–Kutta Methods, SIAM J. Numer.
Anal. 22 (1985) 1014–1027.

[14] L.F. Shampine, Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

[15] L.F. Shampine and M.W. Reichelt, The Matlab ODE Suite, SIAM J. Sci.
Comput. 18 (1997) 1–22.

[16] L.F. Shampine and S. Thompson, Solving DDEs in Matlab, Appl. Numer.
Math. 37 (2001) 441–458.

[17] L.F. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with Mat-
lab, Cambridge Univ. Press, New York, 2003.

18

[18] H.J. Stetter, Considerations concerning a theory for ODE solvers, in: Nu-
merical Treatment of Differential Equations, R. Bulirsch, R.D. Grigorieff,
and J. Schroder, eds., Lecture Notes in Mathematics No. 631, Springer,
New York, 1978, pp. 188–200.

19

