Missing Data Treatments

Presentation Outline

- Types of Missing Data
- Listwise Deletion
- Pairwise Deletion
- Single Imputation Methods
 - Mean Imputation
 - Hot Deck Imputation
- Multiple Imputation
- Data Simulation
Types of Missing Data

- Missing Completely At Random (MCAR)
- Missing At Random (MAR)
- Missing Not At Random (MNAR)

Missing Completely At Random (MCAR)

- No relationship between the missing data and any variables
- Probability of missingness is independent of all other variables
 - Every observation is as equally likely to be missing as any another observation.
- Most missing data treatments can be performed on datasets with data MCAR without introducing bias.

Example:
- A student oversleeps and does not arrive in time to take the first section of a test
Missing At Random (MAR)

- No relationship between the missing data and the independent variable where the missingness occurs

- **However**, the likelihood of missingness is related to another variable in the dataset.

- Examples:
 - Women report their weight on a survey less frequently than males
 - One ethnicity reports income on a questionnaire less frequently than another ethnicity

Missing Not At Random (MNAR)

- The probability of an observation being missing depends on its measured variable.

- This is the most troublesome type of missing data and is often termed “non-ignorable.”

- Examples:
 - People who are poor are more likely not to report income on a survey.
 - Struggling readers are more likely to skip questions on a reading test.
Listwise Deletion

- Process: if any observation is missing for any participant, delete all of the data for that participant.
- Listwise deletion assumes the data are MCAR.
- Pros
 - Very easy procedure
- Cons
 - Decreases the sample size & statistical power
 - Increases standard error & widens confidence intervals

Example:

<table>
<thead>
<tr>
<th>dv</th>
<th>iv1</th>
<th>iv2</th>
<th>iv3</th>
<th>iv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>50</td>
<td>NA</td>
<td>NA</td>
<td>85</td>
</tr>
<tr>
<td>95</td>
<td>45</td>
<td>53</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>65</td>
<td>110</td>
<td>78</td>
</tr>
<tr>
<td>NA</td>
<td>42</td>
<td>67</td>
<td>105</td>
<td>92</td>
</tr>
</tbody>
</table>
Listwise Deletion

- Example:

<table>
<thead>
<tr>
<th>dv</th>
<th>iv1</th>
<th>iv2</th>
<th>iv3</th>
<th>iv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>45</td>
<td>53</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>65</td>
<td>110</td>
<td>78</td>
</tr>
</tbody>
</table>

Pairwise Deletion

- Process: remove cases that have missing data only when it pertains to a certain calculation.
- This is also referred to as available case analysis.
- Pairwise deletion assumes the data are MCAR.
- Pros
 - Retains more data compared with listwise deletion
- Cons
 - Can introduce bias if data are not MCAR
Pairwise Deletion

Example: If weight is not being used in the analysis, the cases where weight is missing would not be removed. If weight is a variable in the analysis, those cases would be removed.

<table>
<thead>
<tr>
<th>dv</th>
<th>age</th>
<th>weight</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>50</td>
<td>NA</td>
<td>58</td>
</tr>
<tr>
<td>95</td>
<td>45</td>
<td>100</td>
<td>62</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>110</td>
<td>NA</td>
</tr>
<tr>
<td>110</td>
<td>NA</td>
<td>105</td>
<td>68</td>
</tr>
</tbody>
</table>
Single Imputation Techniques

- Imputation: substituting a value for a missing observation
- Single Imputation: each missing value is filled in with one plausible value
- Single Imputation Techniques
 - Mean Imputation
 - Hot Deck Imputation

Mean Imputation

- This technique imputes the mean of a variable for the missing observations for that variable.

Pros
- Retains sample size

Cons
- Decreases standard deviation and standard errors
- Creates smaller confidence intervals, increasing the probability of Type 1 errors
Mean Imputation

例示:

<table>
<thead>
<tr>
<th>dv</th>
<th>iv1</th>
<th>iv2</th>
<th>iv3</th>
<th>iv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>50</td>
<td>NA</td>
<td>NA</td>
<td>86</td>
</tr>
<tr>
<td>95</td>
<td>45</td>
<td>54</td>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>65</td>
<td>110</td>
<td>78</td>
</tr>
<tr>
<td>NA</td>
<td>43</td>
<td>67</td>
<td>105</td>
<td>92</td>
</tr>
</tbody>
</table>

Means: 82 42 62 105 83
Hot Deck Imputation

- Process: for each missing value, find an observation with similar values in the X and take its Y value. If multiple matching values are found, the mean of those values is imputed.
- This can also be referred to as matching.
- Hot deck imputation utilizes the current dataset to find matches. Cold deck imputation utilizes an existing dataset to find matches.

Hot Deck Imputation

- Pros
 - Retains size of dataset
- Cons
 - Difficult to do when there are multiple variables with missing data
 - Reduces standard errors by underestimating the variability of the variable
Hot Deck Imputation

* Example:

<table>
<thead>
<tr>
<th>dv</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>3.5</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>88</td>
<td>4</td>
</tr>
<tr>
<td>NA</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dv</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>3.5</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>88</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
</tr>
</tbody>
</table>

Multiple Imputation

* Process: each missing value is replaced with multiple plausible values. This creates multiple possible datasets. Then, these datasets are “pooled” together to come up with one result

Impute

Creates multiple possible datasets

Analyze

Run analysis on each dataset

Pool

Find average of estimates
Multiple Imputation

- Multiple methods for computing missing values
 - Predictive Mean Matching (pmm)
 - Bayesian Linear Regression (norm)
 - Logistic Regression (logreg)
 - Linear Discriminant Analysis (lda)
 - Random sample from observed values (sample)
 - Many others

Multiple Imputation

- Pros
 - Imputes multiple plausible values - reduces possibility for bias

- Cons
 - Difficult to compute
Practice in R - Setting up Data

* Create this data frame in R and name it “example”

* Run regression with Y as the DV and X as the IV

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept) | 4.6867 | 0.9870 | 4.748 | 0.00209 ** |
| x | 0.1379 | 0.1615 | 0.854 | 0.42150 |
| --- | | | | |
| Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 |

Residual standard error: 1.445 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.09431, Adjusted R-squared: -0.03508
F-statistic: 0.7289 on 1 and 7 DF, p-value: 0.4215

Practice in R - Listwise Deletion

* Listwise Deletion

(examplelistwise<-na.omit(example))

* Run regression with y as DV and x as IV

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept) | 4.6867 | 0.9870 | 4.748 | 0.00209 ** |
| x | 0.1379 | 0.1615 | 0.854 | 0.42150 |
| --- | | | | |
| Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 |

Residual standard error: 1.445 on 7 degrees of freedom
Multiple R-squared: 0.09431, Adjusted R-squared: -0.03508
F-statistic: 0.7289 on 1 and 7 DF, p-value: 0.4215
Practice in R - Mean Imputation

✦ Mean Imputation

library(Hmisc)
exampmean<-example
exampmean$x<-impute(exampmean$x, mean)

✦ Run regression with y as DV and x as IV

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 4.4728 | 1.1004 | 4.065 | 0.00227 ** |
| x | 0.1379 | 0.1857 | 0.743 | 0.47476 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.661 on 10 degrees of freedom
Multiple R-squared: 0.05227, Adjusted R-squared: -0.0425
F-statistic: 0.5516 on 1 and 10 DF, p-value: 0.4748

Practice in R - Hot Deck Imputation

✦ Hot Deck Imputation

library(rrp)
examphehd<-rrp.impute(example)
examphehdd<-examphehd$new.data

✦ Run regression with y as DV and x as IV

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 4.2215 | 0.8437 | 5.003 | 0.000535 *** |
| x | 0.2115 | 0.1528 | 1.384 | 0.196413 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.563 on 10 degrees of freedom
Multiple R-squared: 0.1608, Adjusted R-squared: -0.0425
F-statistic: 1.916 on 1 and 10 DF, p-value: 0.1964
Practice in R - Multiple Imputation

* Multiple Imputation

```r
library(mice)
exampler <- mice(example, meth=c("","pmm"), maxit=1)
exampler2 <- with(exampler, lm(y~x))
mipooled <- pool(exampler2)
mipooled
```

* Run regression with y as DV and x as IV

| | est | se | t | df | Pr(>|t|) |
|--------|---------|---------|---------|--------|------------|
| (Intercept) | 5.15015978 | 1.1108854 | 4.63608574 | 7.679074 | 0.00186596 |
| x | 0.01100627 | 0.1777149 | 0.06193217 | 7.486365 | 0.95223815 |

Practice in R - Comparing Methods

Listwise: grey
Mean Imputation: black
Hot Deck: blue
Multiple Imputation: purple
Simulation in R

- Population = 100,000
- Variables: DV, IV1, IV2, IV3
- Randomly sampled 5 subsets, n = 5,000
- Created 3 datasets from each subsets with 5%, 10%, and 20% missingness on IV1
- Performed Listwise Deletion, Mean Imputation, Hot Deck Imputation, and Multiple Imputation on each dataset
- Calculated regression estimates
- Calculated Percent Relative Parameter Bias and Relative Standard Error Bias
Comparing Methods - PRPB

- Percent Relative Parameter Bias (PRPB)
 - Measures the amount of bias introduced under a specific set of conditions (e.g., missing data treatments)
 \[
 B(\hat{\theta}_p) = \left(\frac{\hat{\theta}_p - \theta_p}{\theta_p} \right) \times 100
 \]
 \(\hat{\theta}_p\) : mean of the pth parameter for x estimates
 \(\theta_p\) : corresponding population parameter
 - Produces standardized metric to examine the size and direction of the bias
 - Values above 5% or below -5% are considered unacceptable

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>IV1</th>
<th>IV2</th>
<th>IV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listwise Deletion PRPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% missing</td>
<td>-1.569</td>
<td>-0.064</td>
<td>2.640</td>
<td>-4.672</td>
</tr>
<tr>
<td>10% missing</td>
<td>-1.602</td>
<td>-0.315</td>
<td>1.743</td>
<td>-2.645</td>
</tr>
<tr>
<td>20% missing</td>
<td>-1.581</td>
<td>-0.243</td>
<td>3.823</td>
<td>-3.991</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>IV1</th>
<th>IV2</th>
<th>IV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Deck Imputation PRPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% missing</td>
<td>-1.688</td>
<td>2.749</td>
<td>2.561</td>
<td>2.562</td>
</tr>
<tr>
<td>10% missing</td>
<td>-1.700</td>
<td>5.856</td>
<td>0.525</td>
<td>3.288</td>
</tr>
<tr>
<td>20% missing</td>
<td>-1.762</td>
<td>12.544</td>
<td>0.569</td>
<td>7.024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>IV1</th>
<th>IV2</th>
<th>IV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Imputation PRPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% missing</td>
<td>-1.723</td>
<td>-0.169</td>
<td>5.743</td>
<td>4.658</td>
</tr>
<tr>
<td>10% missing</td>
<td>-1.462</td>
<td>-0.502</td>
<td>5.058</td>
<td>-11.168</td>
</tr>
<tr>
<td>20% missing</td>
<td>-0.877</td>
<td>-0.771</td>
<td>5.454</td>
<td>-46.752</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>IV1</th>
<th>IV2</th>
<th>IV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Imputation PRPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% missing</td>
<td>-1.658</td>
<td>-0.281</td>
<td>3.331</td>
<td>0.692</td>
</tr>
<tr>
<td>10% missing</td>
<td>-1.544</td>
<td>-0.046</td>
<td>2.142</td>
<td>-6.233</td>
</tr>
<tr>
<td>20% missing</td>
<td>-1.519</td>
<td>-0.507</td>
<td>3.378</td>
<td>-7.736</td>
</tr>
</tbody>
</table>
Comparing Methods - PRPB

Listwise Deletion PRPB

Mean Imputation PRPB

5% missing: Grey
10% missing: Black
20% missing: Blue
Comparing Methods - PRPB

Hot Deck Imputation PRPB

Percentage Relative Parameter Bias

Parameter

Multiple Imputation PRPB

Percentage Relative Parameter Bias

Parameter

5% missing: Grey
10% missing: Black
20% missing: Blue
Comparing Methods - RSEB

• Relative Standard Error Bias (RSEB)
 • Measures the amount of bias in standard error estimates
 \[B(s_{\hat{\theta}_p}) = \left(\frac{s_{\hat{\theta}_p} - \bar{s}_{\hat{\theta}_p}}{s_{\hat{\theta}_p}} \right) \times 100 \]
 - \(\bar{s}_{\hat{\theta}_p} \) : mean of the standard errors of the intercepts
 - \(s_{\hat{\theta}_p} \) : standard deviation of the intercepts
 • Produces standardized metric to examine the size and direction of the bias
 • Values above 10% or below -10% are considered unacceptable

Comparing Methods - RSEB

<table>
<thead>
<tr>
<th></th>
<th>Listwise</th>
<th>Mean Imputation</th>
<th>Hot Deck Imputation</th>
<th>Multiple Imputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% missing</td>
<td>82.47</td>
<td>102.55</td>
<td>85.38</td>
<td>107.45</td>
</tr>
<tr>
<td>10% missing</td>
<td>68.77</td>
<td>86.43</td>
<td>55.62</td>
<td>39.48</td>
</tr>
<tr>
<td>20% missing</td>
<td>51.54</td>
<td>39.62</td>
<td>7.06</td>
<td>66.21</td>
</tr>
</tbody>
</table>
Comparing Methods - RSEB

RSEB for Different Data Treatment Methods

- Listwise: grey
- Mean Imputation: black
- Hot Deck: blue
- Multiple Imputation: purple

Conclusions

- Prevent missing data
- If data is missing, attempt to determine why it is missing.
- No “silver bullet” treatment method
References

