How much power from MEMS windmills?

January 20, 2014 // Peter Clarke

A University of Texas Arlington research team has enjoyed considerable publicity for its development of a MEMS windmill that the developers have said could, when produced in array, provide energy for a mobile phone or be used for home energy generation.

But is that reasonable?

The one thing that is conspicuous by its absence from any of the photographs or the Youtube video of the prototype MEMS windmill, is any electrical wiring. Similarly conspicuous by its absence from the UT Arlington website posting, is any discussion of how much electrical power could be drawn from a millimeter-scale windmill.

In fact it is a general consideration that the efficiency of conversion from wind to electrical power increases the larger the system. Hence the desire to create wind turbines that are hundreds of feet high. So how efficient would an array of thousands of millimeter-scale windmills be? Would it be practical as a source of significant amount of electrical energy?

Nonetheless Smitha Rao and J.-C. Chiao at UT Arlington have designed and built a windmill that is about 1.8-mm at its widest point using a recently formed foundry, WinMEMS Technologies Co. Ltd. (Guishan, Taiwan). The blades are made from nickel alloy using planar multilayer electroplating techniques.

"The problem most MEMS designers have is that materials are too brittle," Rao said, in a statement on the website. MEMS are typically made from silicon. The micro windmills were tested in September 2013 and operate under "strong artificial winds" without any fracture in the material because of the durable nickel alloy and smart aerodynamic design, according to UT Arlington.

WinMEMS likes the idea and has struck an agreement with UT Arlington whereby the university gets to hold the intellectual property while WinMEMS is licensed to explore commercialization opportunities.

Tiny windmills and tiny amounts of power. But how much?

WinMEMS has a patent that will expire in 2017 and has one pending. Many believe that the technology will be used to power wireless sensors, which in turn could generate energy and power hundreds of other MEMS devices.

How much electrical power could be drawn from a millimeter-scale windmill?

The efficiency of conversion from wind to electrical power increases with the size of the system. Larger windmills are more efficient because they can capture more wind energy. However, it is not clear how many of these micro windmills would be required to generate a significant amount of electrical power for practical use.

Nonetheless, the development of this technology is an exciting advancement in the field of microscale energy generation. It opens up new possibilities for the future of renewable energy and could lead to new applications in various industries.
It is clear that MEMS windmills could be easy to make at the wafer scale and could be produced in very thin redundant structures.

Researcher Chiao said that flat panels with thousand of MEMS windmills could be mounted on the walls of buildings to harvest energy for lighting, security or environmental sensing and wireless communication.

There may be some issues about the most efficient MEMS structure and its orientation within a wall-mounted panel – where the wind passes over the surface rather than through it – but such a discussion can only be had in the context of how much electrical power can be drawn from the system.

Related links and articles:
www.uta.edu
www.winmemstech.com

News articles:
Ten analog, MEMS and sensor startups to watch in 2014
Singapore, Abu Dhabi, agree to develop MEMS together

The company Facebook
Power Management
Energy Harvesting

MOST POPULAR NEWS

AMD moves to put Android on PCs
Volvo starts large test with robot cars on public roads
Cree beats LED efficiency benchmark

How much power from MEMS windmills? - Electronics Eetimes
2/3/2014

Understanding the Requirements for LTE

Filter Guru Kendall Castor-Perry which provide invaluable practical Analog Design guidelines.

Related News

Sales record ends chip industry's year
3D IC ramp up: what can we learn from MEMS?
JM Energy invests $60m in high-volume LIC production
Is graphene a real opportunity or just hype?
AFE block serves as I/V converter for sensors
Business News
More funds for SiC-on-silicon power technology

February 03, 2014
Martin Lamb has been appointed as the Chairman of Coventry-based Anvil Semiconductors Ltd, to lead the company's commercialization...

Market News
Sales record ends chip industry's year

Technology News
Design guide supports high speed COM Express signals

Technology News
Researchers make magnetic monopoles

Feature Articles
3D IC ramp up: what can we learn from MEMS?

February 03, 2014
Under the motto “Application Ready”, this year’s 3D TSV Summit was very much focused on how to make 3D IC design an attractive...

Technology News
Samsung to reveal tablet with10-inch AMOLED at MWC 2014?

Business News
Five lessons from Lenovo’s Motorola deal

Business News
More funds for SiC-on-silicon power technology

February 03, 2014
Martin Lamb has been appointed as the Chairman of Coventry-based Anvil Semiconductors Ltd, to lead the company's commercialization...

Market News
Sales record ends chip industry's year

Technology News
Design guide supports high speed COM Express signals

Technology News
Researchers make magnetic monopoles

Feature Articles
3D IC ramp up: what can we learn from MEMS?

February 03, 2014
Under the motto “Application Ready”, this year’s 3D TSV Summit was very much focused on how to make 3D IC design an attractive...

Technology News
Researchers make magnetic monopoles

Feature Articles
MediaTek goes wearable, Chinese and cheap

Business News
Distributor MSC Technologies to operate as part of Avnet

Business News
Five lessons from Lenovo’s Motorola deal