Technology uses micro-windmills to recharge cell phones

Flat panels with thousand of windmills could be made and mounted on the walls of houses or building to harvest energy for lighting, security or environmental sensing and wireless communication.

A UT Arlington research associate and electrical engineering professor have designed a micro-windmill that generates wind energy and may become an innovative solution to cell phone batteries constantly in need of recharging and home energy generation where large windmills are not preferred.

Smitha Rao and J.-C. Chiao designed and built the device that is about 1.8 mm at its widest point. A single grain of rice could hold about 10 of these tiny windmills. Hundreds
Technology uses micro-windmills to recharge cell phones

Rao’s works in micro-robotic devices initially heightened a Taiwanese company’s interest in having Rao and Chiao brainstorm over novel device designs and applications for the company’s unique fabrication techniques, which are known in the semiconductor industry for their reliability.

“The company was quite surprised with the micro-windmill idea when we showed the demo video of working devices,” Rao said. “It was something completely out of the blue for them and their investors.”

Rao’s designs blend origami concepts into conventional wafer-scale semiconductor device layouts so complex 3-D moveable mechanical structures can be self-assembled from two-dimensional metal pieces utilizing planar multilayer electroplating techniques that have been optimized by WinMEMS Technologies Co., the Taiwanese fabrication foundry that took an initial interest in Rao’s work.

“The micro-windmills work well because the metal alloy is flexible and Smitha’s design follows minimalism for functionality.” Chiao said. WinMEMS became interested in the micro-electro mechanical system research and started a relationship with UT Arlington. Company representatives visited with the UT Arlington team several times in 2013 to discuss collaboration.

An agreement has been established for UT Arlington to hold the intellectual properties while WinMEMS explores the commercialization opportunities. UT Arlington has applied for a provisional patent.

Currently, WinMEMS has been showcasing UT Arlington’s works on its website and in public presentations, which include the micro-windmills, gears, inductors, pop-up switches and grippers. All of those parts are as tiny as a fraction of the diameter of a human hair.

These inventions are essential to build micro-robots that can be used as surgical tools, sensing machines to explore disaster zones or manufacturing tools to assemble micro-machines.

“It’s very gratifying to first be noticed by an international company and second to work on something like this where you can see immediately how it might be used,” said Rao, who earned her Ph.D in 2009 at UT Arlington. “However, I think we’ve only scratched the surface on how these micro-windmills might be used.” The micro windmills were tested successfully in September 2013 in Chiao’s lab. The windmills operate under strong artificial winds without any fracture in the material because of the durable nickel alloy and smart aerodynamic design.

“The problem most MEMS designers have is that materials are too brittle,” Rao said. “With the nickel alloy, we don’t have that same issue. They’re very, very durable.”

The micro-windmills can be made in an array using the batch processes. The fabrication cost of making one device is the same as making hundreds or thousands on a single wafer, which enables for mass production of very inexpensive systems.

“Imagine that they can be cheaply made on the surfaces of portable electronics,” Chiao said, “so you can place them on a sleeve for your smart phone. When the phone is out of battery power, all you need to do is put on the sleeve, wave the phone in the air for a few minutes and you can use the phone again.”

Chiao said because of the small sizes, flat panels with thousand of windmills could be made and mounted on the walls of houses or building to harvest energy for lighting, security or environmental sensing and wireless communication.
Technology uses micro-windmills to recharge cell phones

The micro-windmills operate under strong artificial winds without any fracture in the material because of the durable nickel alloy and smart aerodynamic design. Typical MEMS materials would be too brittle. They can be made in an array using batch processing. Researchers at the University of Texas – Arlington stated at the beginning of this year. J.-C. Chiao and Smitha Rao developed a small device that is just 1.8 millimeters by 2 millimeters. Micro-windmills could power cell phones. They designed the devices that are so small about 50 could fit on a penny. Hundreds could easily fit on a case. Wind energy has become commonplace, harnessing wind energy to do the same has never been contemplated, because it would involve the arduous task of carrying around windmills. The micro-windmills are so small about 50 could fit on a penny. Windmills are made of a durable grain of rice. The aerodynamic design is so small about 50 could fit on a penny. They designed the devices that are so small about 50 could fit on a penny. Researchers at the University of Texas – Arlington stated at the beginning of this year. J.-C. Chiao and Smitha Rao developed a small device that is just 1.8 millimeters by 2 millimeters. The future is bright for small micro-windmills that can charge cell phones without outlets. The micro-windmills could charge cell phones with a wave of the hand. It's still early days for micro-windmills.未来，可以利用微风车为手机充电。