

w hat your friends like.

278 people like this. Sign Up to see

SIEMENS

How to Cut the High Cost of Air Webinar on-demand until March 11, 2014

- News» »
- Events» »
- Editorials» » Tutorials» »
- Jobs
- Catalogs» »
- Videos» >
- Downloads» »
- Bloas
- Forums
- Books
- Advertise» »

the latest posts on the EDA, IP and SoC Industies

« Yahoo CEO Marissa Meyer's Keynote at the 2014 CES

Video Roundup

Sanjay Gangal

A showcase for electronic design videos around the world-wide web.

Smitha Rao and J.C. Chiao Design Micro-Windmills to Charge Cell **Phones**

January 11th, 2014 by Sanjay Gangal

Article source: University of Texas Arlington

A UT Arlington research associate and electrical engineering professor have designed a microwindmill that generates wind energy and may become an innovative solution to cell phone batteries constantly in need of recharging and home energy generation where large windmills are not preferred.

Smitha Rao and J.-C. Chiao designed and built the device that is about 1.8 mm at its widest point. A single grain of rice could hold about 10 of these tiny windmills. Hundreds of the windmills could be embedded in a sleeve for a cell phone. Wind, created by waving the cell

Back to 'EDACafe Blogs' Video Roundup

Subscribe to this blog

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 3 other subscribers

Email Address

Subscribe

Share 8+1 0

Tweet | {1 |

Recent Posts

- Smitha Rao and J.C. Chiao Design Micro-Windmills to Charge Cell Phones
- Yahoo CEO Marissa Meyer's Keynote at the 2014 CES
- » HP ZBook15 Mobile Workstation Review - Is Beauty More Than Skin Deep?
- Dell Precision M3800 ultra thin and light workstation announced
- $^{\scriptscriptstyle{(\!)}}$ HP's Big Workstation Launch Wows 'em In the Big Apple

Recent Comments

- aniel Payne on Dell Precision M3800 ultra thin and light
- workstation announced Precision M3800 ultra thin and
- light workstation announced istrator on HP's Big Workstation Launch Wows 'em In the Big Apple
- Ventham on HP's Big Workstation Launch Wows 'em

In the Big Apple

January 2014

	М	Т	W	Т	F	S	S	
			1	2	3	4	5	
	6	7	8	9	10	11	12	
	13	14	15	16	17	18	19	
	20	21	22	23	24	25	26	
	27	28	29	30	31			
« Dec								

Categories

- » Analog Mixed-Signal (5)
- » Cadence (
- » Silicon Realization (2) » Mixed-Signal Design (1)
- Dell (1)
- » **HP** (2)
- » Lithography (1)
- » Low Power Design (4)
- » Magma (2

phone in air or holding it up to an open window on a windy day, would generate the electricity that could be collected by the cell phone's battery.

» Mentor (6)

» Calibre (3)

» InRoute (3)

» HyperLynx (1)

» Olympus SoC (3)

» PCB Design (2)

» PI – Power Integrity (2)

» Synopsys (8)

» DesignWare IP (3)

» Discovery Visualization Environment (DVE) (2)

» Lynx Design System (2)

» Tanner EDA (3)

» Tutorial (1)

» Uncategorized (10)

» UTA (1)

Tags

» Yahoo (1)

Alberto Sangiovanni-Vincentelli Cadence Dell Display EDA Georgia Tech HP HPO J.C. Chiao Laptop M3800 Marissa Meyer MEMS Micro-Windmill Online Masters Pat Kannar Richard Goering Smitha Rao Susan Smith Tutorial Udacity UTA Windmill Workstations X620 Yahoo Z27i Z30i Z420 Z820 Zbook

Meta

- » Log in
- » Entries RSS
- » Comments RSS
- » WordPress.org

місто-мінанні он а ренну

Rao's works in micro-robotic devices initially heightened a Taiwanese company's interest in having Rao and Chiao brainstorm over novel device designs and applications for the company's unique fabrication techniques, which are known in the semiconductor industry for their reliability.

UT Arlington Research Associate Smitha Rao

"The company was quite surprised with the micro-windmill idea when we showed the demo video of working devices," Rao said. "It was something completely out of the blue for them and their investors.

Rao's designs blend origami concepts into conventional wafer-scale semiconductor device layouts so complex 3-D moveable mechanical structures can be self-assembled from twodimensional metal pieces utilizing planar multilayer electroplating techniques that have been optimized by WinMEMS Technologies Co., the Taiwanese fabrication foundry that took an initial interest in Rao's work.

 $\label{thm:constraints} \begin{tabular}{ll} ``The micro-windmills work well because the metal alloy is flexible and Smitha's design follows minimalism for functionality." Chiao said.$

WinMEMS became interested in the micro-electro mechanical system research and started a relationship with UT Arlington. Company representatives visited with the UT Arlington team several times in 2013 to discuss collaboration.

An agreement has been established for UT Arlington to hold the intellectual properties while WinMEMS explores the commercialization opportunities. UT Arlington has applied for a provisional patent.

Currently, WinMEMS has been showcasing UT Arlington's works on its website and in public presentations, which include the micro-windmills, gears, inductors, pop-up switches and grippers. All of those parts are as tiny as a fraction of the diameter of a human hair.

These inventions are essential to build micro-robots that can be used as surgical tools, sensing machines to explore disaster zones or manufacturing tools to assemble micro-machines.

"It's very gratifying to first be noticed by an international company and second to work on something like this where you can see immediately how it might be used," said Rao, who earned her Ph.D in 2009 at UT Arlington. "However, I think we've only scratched the surface on how these micro-windmills might be used."

The micro windmills were tested successfully in September 2013 in Chiao's lab. The windmills operate under strong artificial winds without any fracture in the material because of the durable nickel alloy and smart aerodynamic design.

"The problem most MEMS designers have is that materials are too brittle," Rao said. "With the nickel alloy, we don't have that same issue. They're very, very durable.'

The micro-windmills can be made in an array using the batch processes. The fabrication cost of making one device is the same as making hundreds or thousands on a single wafer, which enables for mass production of very inexpensive systems.

"Imagine that they can be cheaply made on the surfaces of portable electronics," Chiao said, "so you can place them on a sleeve for your smart phone. When the phone is out of battery power, all you need to do is to put on the sleeve, wave the phone in the air for a few minutes and you can use the phone again."

Chiao said because of the small sizes, flat panels with thousand of windmills could be made and

mounted on the wans of nouses of building to harvest energy for lighting, security or environmental sensing and wireless communication.

He added that it has been fulfilling to see his former student succeed and help move innovation toward the marketplace.

``To see a company recognize that and seek you out for your expertise speaks volumes about what UT Arlington means to the world," he said proudly.

The University of Texas at Arlington is a comprehensive research institution of more than 33,300 students and 2,300 faculty members in the epicenter of North Texas. It is the second largest institution in the University of Texas System. Research expenditures reached almost \$78 million last year. Visit www.uta.edu for more information.

About WinMEMS

MEMS(Micro-Electrical-Mechanicaloffers high-quality and sophisticated System) foundry services to our customers. Our state-of-the-art technology is based on LIGAlike process which enables fabrication of complex 3-dimensional micro-structures. Customers can realize their innovations by taking the advantage of flexible geometry designs, miniature scales (ranged from microns to sub-millimeters), and high-precision tolerance (in micron range). Different metal materials (Nickel-based alloys) can also be integrated and fabricated together into one device. All the process steps are carried out in a semiconductor-class fab. We implement components with the specifications out of the scope of traditional micro-machining approaches.WinMEMS was founded in 2007. We target at potential market applications such as semiconductor test interface (MEMS probes), ultra-precision miniature metal parts, microstructures, medical and bio-chemical components (DNA/protein/chemical sensing, cell/protein/enzyme production with micro-fluidic channels, bio-probes), airborne sensing, antenna and RF contacts, accelerometers (sensitive), energy harvesting or aerospace applications....

Tags: J.C. Chiao, MEMS, Micro-Windmill, Smitha Rao, UTA, Windmill

This entry was posted on Saturday, January 11th, 2014 at 1:17 pm and is filed under UTA. You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

Leave a Reply							
Your email address will not be published. Required fields are marked st							
Name *							
Email *							
②							
CAPTCHA Code *							
You may use these HTML tags and attributes: <abbr title=""> <acronym title=""> <blockquote cite=""> <cite> <code> <del datetime=""> <i> <q cite=""> <strike> </strike></q></i></code></cite></blockquote></acronym></abbr>							
\square Notify me of follow-up comments by email.	Post Comment						
\square Notify me of new posts by email.							

- 1) Click the download button
- 2) This will take you to our web page
- 3) Download the FREE product

Privacy Policy