Minimal Wavelength Assignment in Survivable Mesh Networks

Richard S. Barr
Mark W. Lewis

Southern Methodist University

©1999,2000 Richard Barr, Mark W. Lewis
Telecommunications Networks

- Exponential growth in services demand
- Competitive forces on providers
- Creates pressure for greater efficiencies & backbone network capacity
Backbone Network Design

• Designing telecom networks involves:
 – Using existing, building new net links
 – Selecting equipment
 – Routing demand over given topology

• A wide range of optimization problems
 – Variety of topologies: rings, ATM, wireless
 – Linear, DXC, WDM, DWDM
Network Design Problem

• Given:
 – Network of nodes, fiber-optic links
 – Demand matrix
 • Dedicated bandwidth between some or all pairs of nodes

• Required:
 – Link capacities
 – Demand routing
 – Equipment
Network Design Approaches

- Primary network topologies: ring and mesh
- SONET Ring designs
 - A series of (connected) rings
 - Automatic recovery from a single link failure
 - The industry standard
Network Design Approaches

• **Mesh topologies** use:
 – Point-to-point demand working paths
 – Alternate demand restoration paths for rerouting at link failure

• Typically require less spare bandwidth than ring designs
All-Optical Networks

- SONET’s use of electronics limits capacity
- All-Optical Network (AON) technology
 - Uses Wave-Division Multiplexing (WDM)
 - Transmits multiple signals over an existing fiber line using different wavelengths (λs)
 - Not limited by electronic circuitry
 - Can increase line capacity by 100X - 10,000X
 - Provide same restorability protection as SONET
Network Transport Layers

All-Optical Layer
- Mesh designs prevalent
- (Dense) wave-division multiplexing
- High-level restoration

Sonet Layer
- High-speed protection
- Time-division multiplexing
- Time-slot grooming

Services Layer
- Delivery of services to end user

(Source: T. Krause, Telephony, April 21, 1997)
Designing Mesh Networks
Survivable Mesh Networks

• Overlaying an all-optical mesh on a ring topology provides both quick recovery and lower cost

• A survivable mesh network requires:
 – Location of spare link capacities
 – Working and restoration paths for all demand
Problem Decomposition

- Kennington & Lewis approach:
Minimum Modular Spare Capacity Allocation

• MODCAP (Modular Capacity) software by Kennington and Lewis
 – Determine the minimum spare capacity needed to recover from any single-link failure
 – Capacity is allocated in modular amounts
 • Our special case: multiples of base unit (OC-x)
 • Capacity is allocated on a link-by-link basis
Finding Restoration Paths

• Single Integral Path for Restoration (SPIR) software (Kennington & Lewis)
 – Determines a single restoration path for an OD pair affected by a link failure
 – Single restoration paths correspond to the “ring over mesh” topology
• Wavelength conflicts may be generated here
 – Paths are not necessarily diverse
Designing All-Optical Mesh Networks
All-Optical Networks Use WDM

• Historically:
 – Links consist of 1+ fiber-optic cables
 – Each fiber carries one signal

• Wave-Division Multiplexing allows multiple signals per fiber line
 – Each signal is assigned a different frequency, light wavelength, color, or λ
WDM Can Complicate Design

- Traffic routed between an origin and destination uses a unique wavelength throughout its path
- How are wavelengths assigned to avoid conflicts over a link?
Survivable Mesh Network
Wavelength Assignment Problems

• Given
 – Mesh network
 – Demands (in # of wavelengths per OD)

• Required
 – Wavelength assignments for the working and restoration paths
 – Total number of wavelengths minimized
Problem Decomposition

- Working Paths Generation
- Spare Capacity Allocation (MODCAP)
- Restoration Paths Identification

Network, demands (in λs)

WP Wavelength Assignment

RP Wavelength Assignment

Kennington & Lewis

Barr & Lewis
Wavelength Assignment Problem

- View wavelengths as colors
 - Each demand unit is assigned a color on its path
 - Path is a set of edges connecting O-D pair
- No edge can use the same color for its carried demands
- Simple cases = graph coloring problems
 - NP-hard
 - Efficient heuristics have been developed
Assumption

- No optical packet switching
 - Optical cross connects (OCXs) coming soon
 - Related problem: placement of OCXs and wavelength converters in a DWDM network
 - Every origin-destination pair views their working-path wavelength(s) as dedicated
Restoration Path Wavelength Assignment

• Restoration paths are assigned wavelengths from the set of available wavelengths
 – Failed link will free certain working-path wavelengths

• Edge failures considered independent
 – Restoration paths from different edge failures can use the same color on a link
 – No working path conflicts are allowed
Global Minimal Wavelength Model

- Restore demand, using one unique λ per restoration path, favoring smaller order λ.

$$\begin{align*}
\min & \quad \sum_{e \in E} \sum_{k \in C^e} \sum_{\lambda \in \Lambda^k} \lambda \ f_k^{e\lambda} \\
\text{s.t.} & \quad \sum_{\lambda \in \Lambda^k} f_k^{e\lambda} = d_k^e \quad \forall e \in E, \forall k \in C^e \\
& \quad \sum_{k \in C^e \land i \in k} f_k^{e\lambda} \leq 1 \quad \forall e \in E, \forall i \in E \setminus \{e\}, \forall \lambda \in \Lambda^k \\
& \quad f_k^{e\lambda} \in \{0, 1\} \quad \forall e \in E, \forall k \in C^e
\end{align*}$$
Global RP Wavelength Model

- \(f_{e}^{\lambda}_{k} = \{0,1\} \) assign \(\lambda \) to path \(k \) when \(e \) fails
- \(\lambda = \) wavelength number (1,2,\ldots)
- Consider all RPs simultaneously

Minimize weighted sum of \(f \)s

s.t. Meet each demand, \(d^{e}_{k} \)

Without color clashes
Serial Decomposition Algorithm

• Global model
 – Only small models could be solved with Cplex
 – Used 2000 seconds, Cplex 6
• Heuristic: solve for each edge failure separately, using a Serial Assignment model
 – Emphasizes wavelength re-use
 – Solves edges with largest number of RPs first
Serial Assignment Model

- For a given failed edge e, restore demands C^e using a unique λ, favoring λ which have been used previously.

$$\min \sum_{k \in C^e} \sum_{\lambda \in A^k} \begin{cases}
0.5f_k^\lambda & \text{if } \lambda \in \{ \lambda : \forall i \in k, \lambda \in L_i \} \\
\lambda f_k^\lambda & \text{otherwise}
\end{cases}$$

s.t.

$$\sum_{\lambda \in A^k} f_k^\lambda = d_k^e \quad \forall k \in C^e$$

$$\sum_{k \in C^e \land i \in k \land \lambda \in A^k} f_k^\lambda \leq 1 \quad \forall i \in E \setminus \{e\}, \forall \lambda \in A^k$$

$$f_k^\lambda \in \{0, 1\} \quad \forall k \in C^e$$
Global vs. Decomposition

• On small (10-node) problems
 – Decomposition was two orders of magnitude faster
 – Results were almost identical
Overall Results

• A typical 50-node problem with 200 demands and average node degree of 2.5
 – Working path assignment in ~50 sec (coloring heuristic)
 – Restoration path assignment in ~100 sec (serial decomposition heuristic)

600 MHz Alpha with 98 MB memory available, using CPLEX 6.01

• The corresponding global minimization model instance requires >98 MB memory
Conclusions

• DWDM creates challenging bandwidth management problems
• The global wavelength assignment model can produce large, challenging problem instances
• Decomposition of the survivable network wavelength assignment problem works well
Future Work

• Reducing wavelength conflicts created during restoration path discovery

• Combining working and restoration path wavelength assignment