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Networks with Side Constraints:
An LU Factorization Update

Richard S. Barr, Keyvan Farhangian, Jeffery L. Kennington

An important class of mathematical programming models which are fre-
quently used in logistics studies is the model of a network problem having
additional linear constraints. A specialization of the primal simplex algorithm
which exploits the network structure can be applied to this problem ctass. This
specialization maintains the basis as a rooted spanning tree and a general
matrix called the working basis. This paper presents the algorithms which may
be used to maintain the inverse of this working basis as an LU factorization,
which is the industry standard for general linear programming software. Our
specialized code exploits not only the network structure but also the sparsity
characteristics of the working basis. Computational experimentation indicates
that our LU implementation results in a 50 percent savings in the non-zero
elements in the eta file, and our computer codes are approximately twice as fast
as MINOS and XMP on a set of randomly generated muiticommodity network
flow problems.
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Good software for solving linear programming models is one of the
most important tools available to the logistics engineer. For logistics stud-
les, these linear programs frequently involve a very large network of
nodes and arcs, which may be duplicated by time period. For example,
nodes may represent given cities at a particular point in time while arcs
represent roads, railways, and legs of flights connecting these cities.
Some nodes are designated as supply nodes, others demand nodes,
while some may simply represent points of transshipment. The mathemat-
ical model characterizes a solution such that the supply is shipped to the
demand nodes at least cost while not violating either the upper or lower
pbounds on the flow over an arc.

If the main structure of a logistics problem can be captured in a net-
work model, then the size of solvable problems becomes enormous.
Hence, more realistic situations can be modelled that would otherwise lie
outside the domain of general linear programming techniques. For exam-
ple, one current logistics planning mode! involves 200 nodes and (365
days/yr) (30 years) = 10,950 time periods to give over 2,000,000 con-
straints. Network problems having 20,000 constraints and 20,000,000
variables are solved routinely at the U. S. Treasury Department.

Unfortunately, the pure network structure may require simplification of
the problem to the point that key policy restrictions must be omitted. The
work presented in this study builds upon existing large-scale network
solution technology to allow for the inclusion of arbitrary additional con-
straints. Typical constraints include capacities on vehicles carrying differ-
ent types of goods, restrictions on the total number of vehicles available
for assignment, and budget restrictions. The addition of even a few non-
network constraints can greatly enhance the realism and usability of
these models. Our approach exploits—to as great an extent as possible—
the traditional network portion of the problem while simultaneously en-
forcing any additional restrictions imposed by the practitioner.

For general linear programming systems, the most important compo-
nent is the algorithm used to update the basis inverse. Due to the excel-
lent sparcity and numerical stability characteristics, an LU factorization
with either a Bartels-Golub or Forrest-Tomlin update has been adopted
for modern linear programming systems. For pure network problems, the
pasis is always triangular and corresponds to a rooted spanning tree. The
modern network codes which exploit this structure have been found to be
from one to two orders of magnitude faster than the general linear pro-
gramming systems. In this paper, we have combined these two powerful
techniques into an algorithm for solving network models having additional
side constraints. B

Let Abe anm X nmatrix, fet ¢ and u be n-component vectors, and let
b be an m-component vector. Without loss of generality, the linear pro-
gram may be stated mathematically as follows:
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minimize cx (1)
subject to: Ax=Db (2)
0=x=u. (3)

The network with side constraint model is a special case of (1)—(3) in

which A takes the form
A= {MJ,___} b
S 1T PJdtm

where M is a node-arc incidence matrix.
Ifm =0, then (1) — (3) is a pure network problem.

1.1 Applications

There are numerous applications of the network with side constraint
model. Professor Glover and his colleagues have solved a large pas-
senger-mix model for Frontier Airlines and a large land management
mode! for the Bureau of Land Management (see [7, 8]). A world grain
export model has been solved to help analyze the port capacity of U. S.
ports during the next decade (see [2]). A cargo routing model is being
used by the Air Force Logistics Command to assist in routing cargo
planes for the distribution of serviceable spares (see [1]). Lt. Col. Dennis
Mclain, has developed a large model to assist in the development of a
casualty evacuation plan in the event of a European conlflict (see [14]). A
National Forest Management Model has been developed to aid forest
managers in long term planning for national forests (see {10}). in addition,
work is currently underway which attempts to convert general linear pro-
grams into the network with side constraint model (see {4, 16]).

1.2 Objective of Investigation

Due to both lstorage and time considerations, the basis inverse is main-
tained as an LU factorization in modern LP software (see [3, 5, 15]). The
objective of this investigation is to extend these ideas to the primal parti-

tioning algorithm when applied to the network with side constraints
model.

1.3 Notation

The i"component of the vector a will be denoted by a,. The (i,)" ele-
ment of the matrix A is denoted by A;. A(i) and A[i] denotes the "™ column
and i row of the matrix A, respectively. 0 denotes a vector of zeroes, 1
denotes a vector of ones, and e denotes a vector with a 1 in the k"
position and zeroes elsewhere. Sigma is used to denote the scalar sig-
num function defined by
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1,ify>0
oly) = 0,ify=20
-1, ity <O
The identity matrix is given by “I".

H. THE PRIMAL SIMPLEX ALGORITHM

We assume that A has full row rank and that there exist a feasible
solution for (1)—(3). Given a basic feasible solution, we may partition A, ¢,
X, and u into basic and nonbasic components, that is, A = [BiN], ¢ =
[cBie™], x = [x®ix"], and u = [uBuM]. Using the above partitioning, the
primal simplex algorithm may be stated as follows: ‘

PRIMAL SIMPLEX ALGORITHM
0. Initialization. Let [x®ixN] be a basic feasible solution.
1. Pricing. Let o+ = ¢®B~". Define
Wy = {i:xN =0 and = N(i) > cM},
o = {i:xN = uN and 7 N(i) < cM}.
If ¢ U g = 0, terminate with [x®x"] optimal; otherwise, select k €

Y1 U ¢y and set 6 «— 1 .if Keyy and § < —1, otherwise.
2. Ratio Test. Set y < B~ 'N(k). Set

min )(4B
Ay —oly) = 5{*1—» Oc}
il
i B _ (B
Ao —oly) = 5{L_Xf_, <]
il
Set A <« min {A1, Az, UE}

If A # o, then go to 3; otherwise, terminate with the conclusion that the
problem is unbounded.

3. Update Values. Set x{' < xI + A8 and x® «— xB — Ady. If A = U, re-
turn to step 1.

4. Update Basis Inverse. Let
s = {j:xf = 0 and ofy;) = &}
Ya = {j:xP = uP and —a(y)) = 8}.

Select any £ e i3 U y,. In the basis, replace B(¢) with N(k), update the
inverse of the new basis, and return to step 1.
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(1. THE PARTITIONED BASIS

The network with side constraint model may be stated as follows:

minimize c'x' + ¢2x° (4)
subject to: Mx' = b’ (5)
Sx' + Px? = b? (6)
0=x"=u' (7)
0=x°=u° (8)

We may assume without loss of generality that,
(i) The graph associated with M has n nodes and is connected (i.e.,
there exists an undirected path between every pair of nodes).
(i) [SiP] has full row rank (i.e., rank [SIP] = m).
(i) Total supply equals total demand (i.e., 1b' = 0).
Since the rank of system (5) is one less than the number of rows, we
add what has been called the root arc to (5) to obtain

Mx' + ePa = b’

where0=a=0and1=p=n.
Then the constraint matrix for the network with side constraints model

becomes
[M i iep}
A= |—+——t=—

D
and A has full row rank SR

It is well-known that every basis for A may be placed in the form

e (©)

where T corresponds to a rooted spanning tree and
i [ T'+77'cQ DT —T7'CcQ ! }
B = e et
(10)

where Q = F — DT 'C. The objective of this paper is to give algorithms
which maintain Q™" as an LU factorization.

V. THE INVERSE UPDATE
Recall that the partitioned basis takes the form

key n%y
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Let

and let

The inverse update requires a technique for obtaining a new Q™" after a
basis exchange. Let B;, L;, B;, and Q, denote the above matrices at itera-
tion i. Then we want an expression for Q%Y in terms of Q" The transfor-
mation takes the form

B, = ER’ (1)

where E is either an elementary column matrix or a permutation matrix.
Let E be partitioned to be compatible with B. That is,

_ {E_ 0 Ez_} n
Bz | E4 rm
nooom

By examining the (2,2) partition of B2}, we obtain
QY = (B4 - EsT7'C)Q7! (12)

In determining the updating formulae, we must examine two major
cases with subcases.
Case 1. The leaving column is nonkey. For this case, E takes the form

[__I_L_E§~%,
" E,

and (12) reduces to Q24 = E,Q .

Case 2. The leaving column is key.

Lety =€ T ' C.If y # 0, then the k™ column of C can be interchanged
with the | column of T and the new T will be nonsingular.

Subcase 2a. y # 0. Suppose v # 0.

Then E;, — E5 T7' C reduces to

R= -eT7°'C “— rOW ] (13)

Q2 = RQ; ' Case 1 is applied to complete the update.
Subcase 2b. vy = 0. For this case no interchange is possible, the entering
column becomes key, and Q=4 = Q7"
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V. AN LU UPDATE

Let
I T
o
I || : { 0
I _} i1 _}
U= o1
b lL___.
0 Lo
]
and
| E 0
i= T
| Ol b |
{ : { |
[ l
| |

Matrices of the form given by U' and L' are called upper etas and lower
etas, respectively. Suppose we have a factorization of Q™" in the form

Q'=U'W? . . U™FSFs-! . F, (14)

where F', .. | F° are a combination of row and column etas. The right
side of (14) is referred to as the eta file where only the non-identity rows
and columns are stored. Suppose that the k™" column of Qisreplaced by
6(k) to form the new m by m working basis Q. This sectlon presents
algorithms which may be used to update (14) to produce Q 'inthe same
form.

5.1 Nonkey Column Leaves The Basis
If k=m, then let B =FS . . F'Q(K), let

and let
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We will show that Q="' =U"." . U™ 'UmLmFs . F',
If kK < m, then let R* = | and
Q '=U". . URKUST . UTES LR (15)
We next define a new upper eta, U, and a new row eta, R“*', such that
Rkuk+1 - GKRK_H. (16)
Substituting (16) into (15) yields
Q" =U" . UKORRRTIURT L UTES LR (17)
We again define two new eta’s, UK*' and R**2, such that
Rk’+1uk+2 — Dk+1Rk+2_ (18)
Substituting (18) into (17) yields
Q- '=UyU' UkOka+1Rk+2Uk+3 O UmES =
Repeating this process eventually yields
Q '=U" . U, . U"RTES R (19)
Let y = R™FS . . F'Q(k), let
o ]
~ e l
Lm = I 1/7k ;
e F——
{ _'Yk+1/'}’k {
I .
[ |
B } —Ym/ Y& } 4
and let
I~ [ 4 (-
I | |
| |
! |
b7 k=1 |
-~ —_— |
um = 1
S — e
I | I
L | | _
Then UTL™y = €% and we will show that Q~'=U" ... U'0* ...

UrCmRmEs . F

We now present the algorithm which updates the LU representation of
Q™" when the leaving column is nonkey. Assume that @(k) is replacing
Q(K) in the working basis.
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ALG 1: LU UPDATE FOR NONKEY LEAVING COLUMN

1. Set B« F° . FQ()
If k% m, set€<—k R¢ < I, goto 4.
3. Set Lm <1, where [ is m by m.

Set Lﬂlm — 1/Bm.

Set Um «— 1, where I is m by m.

Set UM, « —,8 for T =j<m.

Stop with Q"= U" . .. U™ "UMLMFs R
4. Set o < R [k]U“‘(€+1).

Set Re+1 «— R¢

Set Rk f+1 < Q.

Set Uf — Uit

Set Uk€+‘] <_‘O

(R€Ué+1 — U€R6+1)

Set € «— £+1.
5 1f€<m goto4d, N

(Uk+1 . Um = Uk . Um—1Rm‘)

Set B« RmB‘
6. Set L™ <1, where [ is m by m.

Set l—kk<_ 1/BK

Set Lk<— —B/Bx, fork<j=m.

Set Um <1, where I'is m by m.

oet Uk<— =B, for1 =)=k

Set Ukk <—/1\ o o~

Stop with Q' =U" .. . U~TUU" 0 UTL™RTEE R

no

We now present’the justification for step 3 of ALG 1. For k =m, we
claim that Q' =U' . . U™ 'Umlmrs F'. Note that Q' Q(m) =
Ut U™ TtgTEmg. But by construction UmLmB = e™. Consider

Proposition 1.

Let B be any m-vector and E' be any column eta. If B, = O thenE'B = B.

By Proposition 1, U . . . U™ 'e™ = e™. Therefore, Q™ 1Q( m) = e™. For
IT=0<mlety=F . . F‘Q( ) Byconstructfon y; = Ofor¢ <j=mand
ve = 1. By Proposition 1, Uf*T . Um U™y = . By the construction
of U'. . U‘ wehaveU'. . Ufy=e’ Therefore, if the leaving column is
Q(m), then step 3 of ALG 1 produces Q™'

We now present a theoretical Justlflcann for step 4 of ALG 1.
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Proposition 2.

Let
C T ] |
Urt! = ____i i and RP = |__L____| «—row £~
J/ R — Y
| | N N A I
| | i
| |
L | | _ L { -
7
column ¢
where ¢ # {*.
|f
IR |
Ue = L« | and RP*'= | B | «<row¢*
| | .
7
column ¢
where
{O, ifi=4"
o = .
n;, otherwise, and
B = {ny, fi=47
" Ly, otherwise,

then RPUP*! = UPRP*!,
Proposition 2 is a theoretical justification for step 4 of ALG 1. The propo-
sition to follow shows the precise structure of R™F® . . F'Q. Consider

Proposition 3.

Let U"=F°  F'Q. If U*=R™U", then
U] = {:k,[lc]yjtrln:vtise.
_ We now present the results to prove that Q' =U" . U'Ux
UTL™R™FS . FL
Proposition 4.

Ut oustge L UPIMRTES L FQK) = e,

Proposition 5.

U'. . URTOR L UTCMRTEE L F'QG) = € for i # ko
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By Propositions 4 and 5, we have

Corollary 6.

AN

Q '=Uu' . Utk UmEmRTEs R

Hence, ALG 1 produces the updated working basis inverse.

5.2 Key Column Leaves The Basis

In this section, we present an algorithm for updating the working basis
Inverse to accomphsh a sw1tch between a key column and a nonkey
column. That is, Q = RQ™ 'where R is given by (13) and

Q'=U" . U" . F (20)

We wish to obtain Q" in the same form as (20)
To accomplish this update, we begin with Q'=RU".. . U . F.
We apply Proposition 2 to RU' creating the factorization o' = U'Raw?
UmFS T we continue with the application of Proposition 2 untii we
obtan Q' = U' . UkT'RUR. . UTFS . FT Proposition 2 does not
apgly to R*UX, However a sumple update would be to let UX =
= U™ = | and use the below factorization:

AN

Q '=U0".. U"RUx .. UTFS R
LEFT FILE RIGHT FILE

This update simply involves application of Proposition 2 until it does not
apply (¢ = €*) and then shifting the remainder of the left file to the right
file. We call this update the TYPE 1 UPDATE.

We will now giver an update in which R*U* . . . U™ is modified as op-
posed to moving them to the right file. Let

Ek — Rkuk —

Then we define matrices U*' and E<*'such that EKU<TT = (Jxr1ER+T

Following this procedure, R*U* . . U™ can be replaced by U™ .
UME™*! 50 that
6-1 _ 01 o ka1gk+1 o GmEm+1FS o F1.

Further, we define a row eta R and a column eta F such that E™*' = RF.
Therefore,
Q=0 .. U0t UmRFFS R
LEFT FILE RIGHT FILE




We call this update the TYPE 2 UPDATE.
We now present a set of propositions which justify the TYPE 2 UPDATE.

Proposition 7.

7

Let
] e
I N e o } 0
I Te-1 I ly)
. e ek I NS PR = —— =1
et = [ I Me and EP = | y S Yer o Ye o Ve - Yn
,_776:1{_“" ______ l weld
0+ 0 o : |
I
" 1M
where € # {* and w, = 0.
If
E T
et o !
N —— L o L} _____ 4 e
Urt! = Lae | and EPT = | Ay Aer AL A A,
0 | appql T el
N 0 : L
o [
where
vy, it =¢,

-
o-|

0, if1=¢7,

then EPUP*T = P+ TEP*T,
The following proposition is used to replace the cross matrix E™* T with
a row eta R and a column eta F.

v, otherwise,

n + miner, Otherwise,

& i3
Lt
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Proposition 8.

Let
;/-Lw {
‘/‘L€’~1l
_______ ]_____________4
E= Yoo Ye—1 | Ye | Ye+ < Yn
______ __1__[_.__~__.__.
IIFL€+1I
0 If 1
| Mn !
B |
If
| 2
| 0 o l
| U pee—v
S bt Eva el o i
R = Y1 - Ye—1 X b Yern - Yn and F = LY l
o T —_—
™ 0 l;uvé+1_}
0 ' l b
[ | |
i |/uvr1 |
i 1 1

where X and Y are such that

n
XY = y¢ — >,y
=1 i
i ¢

then E = RF.

We now present the update algorithm for the case in which the €™ column
of T is being switched with the k' column of C. Let y = eT~'C.

ALG 2: LU UPDATE FOR A KEY LEAVING COLUMN

1. Set R «I.
Set R'K] < y.
Set i «— 1.
2. 1fi=k, goto4
Set a < RTKJU(I).
Set R «R"
Set B’k‘” — .
Set LNJi — U
Set U, < 0.
3. Seti«<i+1andgoto2
4. Set UK«

—lki ok

—_I
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5. Apply Proposition 7 to EU™ ! to form U+ 1E* T
Setij«—i+1
If 1<m, go to 5. .
7. Apply Proposition 8 to E™ to obtain RF where X =1
At the completion of step 7 we have Q' =U' ... U™RFF® . F'.

op

VI, COMPUTATIONAL EXPERIMENTATION

Three test problems were selected for the experiment. Sc205 is a stair-
case linear program which was generated by Ho and Loute [12] and
transformed into a network with side constraints. Gifford-Pinchot is a
model of the Gifford-Pinchot National Forest [10] which has also been
transformed into a network with side constraints. RAN is a randomly gen-
erated problem.

These problems were first solved and the pivot agenda was saved.
That is, entering and leaving columns for each pivot were saved on a file.
This file was then used by each code so that all three basis updates follow
the same path to the optimum. The number of nonzeroes required to
represent Q™' at various points in the solution process is illustrated in
Figures 1 and 2. For both problems, the LU Type 2 update dominated
both the LU Type 1 update and the product-form code in terms of
nonzeroes in the inverse. The average core storage required for Q'
using the product-form update is approximately double that required for
the best LU update.

Given the abaove results, we developed three specialized network with
side constraints codes and computationally compared them with three
general in-core LP systems and a special system for multicommodity
network flow problems. All codes are written in FORTRAN and have not
been tailored to either our equipment or our FORTRAN compiler. None of
the codes were tuned for our problem set. A brief description of each
code follows.

NETSIDE1, NETSIDE2 AND NETSIDE3 are our specialized network
with side constraints systems. The first maintains Q™' in product form,
while the second and third maintain Q™' in LU form using a Type 1 and
Type 2 update, respectively. All use the Hellerman and Rarick [11] rein-
version routine. The working basis is reinverted every 60 iterations. The
pricing routine uses a candidate list of size 6 with block size of 200.

MINOS [15] stands for “a Modular In-Core Nonlinear Optimization Sys-
tem” and Is designed to solve problems of the following form:

minimize  f(x) + ¢x
subject to. Ax=b

{=<x<=u
where f(x) is continuously differentiable in the feasible region. For this
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. -1
nonzeroes in Q

}
5000 4 Product Form
4000
3000 +
LU Type 1
2000
LU Type 2
1000 1

> Tterations
80 160 240 320

Figure 1. Nonzero Buildup In The Working Basis Inverse On
SC205 [z22].

(317 columns, 119 nodes, 87 side constraints)
y

study f(x) = 0 at all x and therefore none of the nonlinear subroutines
were used for problem solution.

For linear programs, MINOS uses the revised simplex algorithm with all
data and instructions residing in core storage. The basis inverse is main-
tained as an LU factorization using a Bartels-Golub update. The reinver-
sion routine uses the Hellerman-Rarick [11] pivot agenda algorithm.

XMP is a library of FORTRAN subroutines which can be used to solve
linear programs. The basis inverse is maintained in LU factored form. The
pricing routine uses a candidate list of size 6 with two hundred columns
being scanned each time the list is refreshed. The basis is reinverted
every 50 iterations.

LISS stands for “Linear In-Core Simplex System” and is an in-core LP
solver with the basis inverse maintained in product form. The reinversion
routine is a modification of the work of Hellerman and Rarick [11]. The
basis inverse is refactored every 50 iterations. A partial pricing scheme is
used with 20 blocks.
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nonzeroes in Q

A
00 4+
Product Form
ool
LU Type 1
00 4
LU Type 2
00 +
00 +
00 4
— r T T v r Y T —> lterations
160 320 480 640 800

Figure 2. Nonzero Buildup In The Working Basis Inverse On
Gifford Pinchot {20].
(1160 columns, 533 nodes, 84 side comstraints)

MCNF stands for “Multicommodity Network Flow”. MCNF uses the pri-
mal partitioning algorithm also. The basis inverse is maintained as a set of
rooted spanning trees (one for each commodity) and a working basis
inverse in product form. This working basis inverse has dimension equal
to the number of binding GUB constraints. A partial pricing scheme is
used. Our computational experience is given in Table 1.

The row entitled GUB Constraints, gives the number of LP rows which
correspond to “GUB Constraints™. The row, entitled “Binding GUB Con-
straints”, gives the number of GUB constraints met as equalities at opti-
mality using MCNF. All runs were made on the CDC 6600 at Southern
Methodist University using the FTN compiler with the optimization feature
enabled.

ARSI Y T i
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Based on these results, we conclude that for lightly constrained mul-

ticommodity network flow problems

(i) XMP and MINOS run at approximately the same speed,

(i NETSIDE1, NETSIDE2 and NETSIDES3 run at approximately the

same speed, and

(i) the three NETSIDE codes are approximately twice as fast as XMP

and MINOS.
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