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Abstract. This paper provides a discussion of recent developments related to the
applicability of the regression discontinuity design in economics. It reviews econo-
metric issues, such as identification and estimation methods, as well as a number of
sensitivity and validity tests of importance in empirical application.

1. Introduction

The regression–discontinuity (RD) data design is an evaluation
design that was first introduced by Thistlethwaite and Campbell
(1960) as an alternative to the randomized experiment for evalu-
ating social programs and interventions. From its inception the
design has been termed quasi-experimental, reflecting its intuitive
connection to purely randomized experimental designs. Unlike
experimental data, where randomized assignment guarantees com-
parability between persons in the treated group and in the control
group, assignment in an RD design like that in observational data
is not random and persons who receive treatment will differ system-
atically from those who do not. However, data from an RD design
differ from observational data in that we have specific knowledge
about the assignment rule that influences how persons are assigned
to or selected into treatment. More specifically, the design requires
that there is a known cut-off point in treatment assignment or in
the probability of treatment receipt as a function of one or more
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continuous assignment variables, generating a discontinuity in the
treatment recipiency rate at that point.

Thistlethwaite and Campbell’s original article concerned the
evaluation of the impact of receiving a National Merit Award on
students’ success in obtaining additional college scholarships and
on their career aspirations. In their study an award was given to all
students who obtained a minimum score on a scholarship exami-
nation. Thistlethwaite and Campbell’s insight was that one could
take advantage of knowing the cut-off score to learn about the
impact of award receipt for persons near the cut-off. Assuming that
students who scored just below the minimum score represent a valid
no-treatment comparison group for those who scored just above the
minimum, one could evaluate its impact by relating average out-
comes for award recipients just above the cut-off with those of
non-recipients just below it. That is, under certain comparability
conditions, the assignment near the cut-off can be seen as behaving
almost as if random.

Although the design has been of continued, though limited, inter-
est to evaluation research methodologists (Cook and Campbell,
1979; Trochim, 1984), it has recently experienced considerable gains
in popularity among econometricians and empirical economists
(Angrist and Krueger, 1999; Hahn et al., 2001; Porter, 2003; Imbens
and Lemieux, 2008a, 2008b). This movement has generated several
key econometric advances, including the formal derivation of iden-
tification conditions for causal inference and the introduction of
new semi-parametric estimation procedures for the design. The
concurrent development of a large number of empirical applica-
tions is extending insights into the design’s use and has led to the
emergence of several sensitivity and validity tests.

The emerging popularity of the RD design in applied economic
research is related to several factors. First, the assignment rules
in many existing programs and procedures for allocating social
resources, even though usually not specifically developed for evalu-
ation purposes, nonetheless frequently lend themselves to RD
evaluations because of their structure. Often, program resources are
allocated based on a formula with a cut-off structure that deter-
mines the allocation of resources to recipients. The use of cut-offs
is conceptually compatible with the political and social goal of
allocating scarce resources to those persons who need or deserve
them most. Eligibility cut-offs applied to a continuous quantified
measure of need, such as family income, are often used to screen
potential recipients of a program or in allocating funds. A second

220 Wilbert van der Klaauw

© 2008 Federal Reserve Bank of New York Copyright
Journal compilation © CEIS, Fondazione Giacomo Brodolini and Blackwell Publishing Ltd. 2008



positive feature of the design is that it is intuitive and its results can
be easily conveyed, often with a visual depiction of sharp changes in
both treatment assignment and average outcomes around the cut-
off value of the assignment variable (McEwan and Urquiola, 2005).
Third, it is possible for a researcher to choose from among several
different estimation methods to estimate effects that have credible
causal interpretations (Hahn et al., 2001).

One area of economic research where the design has been par-
ticularly useful in recent years has been the evaluation of educa-
tional interventions. In fact, the first two empirical applications in
the economics literature fall within this area. van der Klaauw (1997,
2002) exploited discontinuities in the amount of financial aid
offered as a function of a student’s ability score to evaluate its effect
on student enrollment decisions. Angrist and Lavy (1999) used a
rule that generated discontinuities in the relationship between
average class size and beginning-of-the-year grade enrollment, to
estimate the effect of class size on student test scores. Education
programs are frequently prescribed or offered to schools or students
who score below a cut-off on some scale (student performance,
poverty), and school and program funding decisions are often based
on allocation formulas containing discontinuities. Among others,
the approach has recently been used to evaluate the effectiveness of
a remedial education program (Jacob and Lefgren, 2004a), a man-
datory summer school program (Matsudaira, 2008), state financial
aid programs (Kane, 2003), federal Title I funding for compensa-
tory education (van der Klaauw, 2008), funding for the Head Start
program in the USA, which provides pre-school, health, and other
services to low-income children aged 3–5 (Ludwig and Miller,
2007), classroom peer effects (Angrist and Lang, 2004), teacher
training programs (Jacob and Lefgren, 2004b), performance-
related incentive pay to teachers (Lavy, 2004), school voucher
programs (Chakrabarti, 2008a, 2008b), the impact of school char-
acteristics on housing prices (Black, 1999; Kane et al., 2006), and
the design is being considered for evaluating Reading First, a
federal program in the USA that provides funding for reading
programs in the early grades (Bloom et al., 2005).

The design has also proven useful in evaluating the socio-
economic impacts of a diverse set of government programs and
laws. The RD approach was adopted to evaluate the impacts of
a US anti-discrimination law (Hahn et al., 1999), an anti-poverty
program in Mexico (Buddelmeyer and Skoufias, 2004), expan-
sions in government-provided health insurance to low-income
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households (Card and Shore-Sheppard, 2004), a federal disability
insurance program (Chen and van der Klaauw, 2008), legislation
aimed at reducing air pollution (Chay and Greenstone, 2005), state
foreclosure laws (Pence, 2006), a social assistance program in
Quebec (Lemieux and Milligan, 2008), compulsory military service
in Germany (Bauer et al., 2004), the parental notification act in
Texas requiring parents to be notified of a minor’s request for an
abortion (Joyce et al., 2006), a federal inmate classification system
determining prison conditions (Chen and Shapiro, 2007), the
incumbency advantage in elections (Lee, 2008), and the impact of
unionization on establishment closure (DiNardo and Lee, 2004). In
all these applications, the treatment variable or the probability of
receiving treatment changes discontinuously as a function of one or
more underlying variables, which is the defining characteristic of
RD data designs.

In the next two sections I will review the conditions under which
the existence of cut-offs in the treatment selection mechanism con-
stitutes a valuable source of identifying information. The exposition
will be closely related to that in Hahn, Todd and van der Klaauw
(2001, HTV in what follows) and van der Klaauw (2002) and will
follow Trochim (1984) in distinguishing between two different
forms of the design, depending on whether the treatment assign-
ment is related to the assignment variable by a deterministic func-
tion (sharp design) or a stochastic one (fuzzy design). Sections 4 and
5 consider parametric and semi-parametric estimation methods for
estimating treatment effects. Sensitivity and validity tests are dis-
cussed in Section 6, and Section 7 concludes with a discussion of
several extensions to the basic RD model.

2. The sharp RD design

Consider the general problem of evaluating the causal effect of
a binary treatment on an outcome variable, using a random sample
of individuals where for each individual i we observe an outcome
measure yi (e.g. a student’s performance on an academic test at the
end of given year) and a binary treatment indicator ti, equal to one
if treatment was received and zero otherwise (e.g. receipt at the
beginning of the year of a fixed scholarship amount). The evalua-
tion problem that arises in determining the effect of t on y is due to
the fact that each individual either receives or does not receive
treatment and is never simultaneously observed in both states. Let
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yi(1) be the outcome given treatment, and yi(0) the outcome in the
absence of treatment. Then the actual outcome we observe equals
yi = tiyi(1) + (1 - ti)yi(0). A common regression model representa-
tion for the observed outcome can then be written as

y t ui i i i= + +α β , [1]

where a = E [yi(0)], bi = yi(1) - yi(0), and yi(0) = a + ui.
Comparing average outcomes of participants (treatment recipi-

ents) with non-participants (non-recipients) would generally not
provide us with an estimate of the average treatment effect E[bi]
because

E y t E y t E E u t E u t
t

i i i i i i i i i

i

1 1 0 0 1 0( ) =[ ]− ( ) =[ ] = [ ]+ =[ ]− =[ ]( )
+

β
Pr ==( ) =[ ]− =[ ]( )0 1 0E t E ti i i iβ β ,

[2]

where we used the fact that E [bi] = E [bi|ti = 1] - Pr(ti = 0) ¥
(E [bi|ti = 1] - E [bi|ti = 0]).

If average outcomes for recipients and non-recipients differed
even in the absence of treatment, or if average outcome gains result-
ing from treatment were different for both groups of individuals,
one or both of the last two parenthesized terms in the equation will
not equal zero. Although randomized assignment of treatment
would guarantee both to be zero, in most observational studies
there would usually be reasons to doubt this to be the case. In an
ordinary least squares regression of the outcome variable on the
treatment indicator, this would imply that the estimated coefficient
for the treatment indicator will generally not have a causal inter-
pretation, whereas in the case of randomized assignment it would
estimate E [bi], the average treatment effect in the population.

In a sharp RD design, individuals are assigned to or selected
for treatment solely on the basis of a cut-off score on an observed
continuous variable x. This variable, alternatively called the assign-
ment, selection, running, or ratings variable, may represent a single
characteristic or a composite variable constructed using multiple
characteristics. Those who fall below some distinct cut-off point x̄
are placed in the control group (ti = 0), whereas those on or above
that point are placed in the treatment group (ti = 1) (or vice versa).
Thus, assignment occurs through a known and measured determin-
istic decision rule: ti = t(xi) = 1{xi � x̄} where 1{·} is the indicator
function.
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As the assignment variable itself may be correlated with the
outcome variable, the assignment mechanism may be non-random.
Consequently when comparing average outcomes for persons who
received and did not receive treatment, the effect of t on y will be
confounded with that of x, implying that the two bias terms in [2]
generally will not equal zero. Moreover, although the sharp design
represents a special case of selection on observables (Heckman and
Robb, 1985), common solutions to such selection problems, such as
propensity score-matching methods, are not applicable here as the
design violates the strong ignorability condition of Rosenbaum and
Rubin (1983), which, in addition to requiring u to be independent of
t conditional on x, requires 0 < Pr(t = 1|x) < 1 for all x whereas here
Pr(t = 1|x) � {0, 1}. In the terminology of Heckman et al. (1997),
there exists no region of common support required for matching.

However, if it is reasonable to assume that persons close to the
threshold with very similar x values are comparable, then we may
view the design as almost experimental near x̄, suggesting that we
could evaluate the causal impact of treatment by comparing the
average outcomes for individuals with ratings just above and below
the cut-off. More formally, consider the following local continuity
assumption:

E [ui|x] and E [bi|x] are continuous in x at x̄, or equivalently,
E [y(1)|x] and E [y(0)|x] are continuous at x̄,

then assuming that the density of x is positive in a neighborhood
containing x̄,

lim lim lim lim

li
x x

i
x x

i
x x

i i
x x

i iE y x E y x E t x E t x
↓ ↑ ↓ ↑

[ ]− [ ] = [ ]− [ ]
+

β β
mm lim

,
x x

i
x x

i

i

E u x E u x

E x
↓ ↑

[ ]− [ ]

= [ ]β

where we used E [yi|x] as shorthand notation for E [yi|xi = x], with
E [bi|x̄] similarly representing E [bi|xi = x̄]. The RD approach of
comparing average outcomes just right and left of the cut-off there-
fore identifies the average treatment effect for individuals close to
the discontinuity point. It is important to recognize that the conti-
nuity assumption formalizes the condition discussed earlier that
individuals just above and below the cut-off are ‘comparable’,
requiring them to have similar average potential outcomes when
receiving treatment and when not. Thus identification is achieved
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assuming only smoothness in expected potential outcomes at the
discontinuity without any parametric functional form restrictions.
The smoothness assumption represents an unusual functional form
restriction, which is required here to take advantage of the known
discontinuity in the treatment rule.

It is a limitation of the RD design that without further assump-
tions, such as a ‘common effect’ assumption, we might learn about
treatment effects only for a subpopulation of persons with values of
x near the discontinuity point. In case of heterogeneous impacts,
the local effect may be very different from the effect at values
further away from the threshold. On the other hand, as pointed out
by HTV this local effect is highly relevant to policy-makers who are
contemplating either expanding or limiting eligibility or participa-
tion via a small change in the cut-off.

The continuity assumption required for identification fulfils an
important function. Even if treatment receipt is determined solely
on the basis of a cut-off score on the assignment variable, this is not
a sufficient condition for the identification of a meaningful causal
effect. The continuity assumption rules out coincidental functional
discontinuities in the x–y relationship such as those caused by other
programs that use assignment mechanisms based on the exact same
assignment variable and cut-off. In addition, as will be discussed in
greater detail in Section 6, the continuity restriction tends to rule
out certain types of behavior both on the part of potential treatment
recipients who exercise control over their value of x, and on the part
of program administrators in choosing the assignment variable and
cut-off point.

3. The fuzzy RD design

In the second type of the RD design, referred to in the literature
as the fuzzy RD design (Campbell, 1969), instead of a deterministic
assignment rule, treatment assignment depends on x in a stochastic
manner, but one in which the propensity score function Pr(t = 1|x)
is again known to have a discontinuity at x̄. Instead of a 0–1 step
function, the treatment probability as a function of x could now
contain a jump at the cut-off that is less than 1.

The fuzzy design is akin to a case of mis-assignment relative to
the cut-off value in a sharp design, with values of x near the cut-off
appearing in both treatment and control groups. This situation is
analogous to having no-shows (treatment group members who do
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not receive treatment) and/or crossovers (control group member
who do receive the treatment) in a randomized experiment. The
mis-assignment may occur if, in addition to the position of the
individual’s score relative to the cut-off value, assignment is based
on additional variables observed by the administrator, but unob-
served by the evaluator.

For example, a decision to offer a scholarship may be based in
part on whether a continuous measure of academic ability exceeds
a given cut-off value, but also on recommendation letters that may
be unobserved by the evaluator. In this case, in evaluating its impact
on subsequent academic achievement, scholarship recipients with a
given ability score could be expected to have higher average out-
comes than the non-recipients with the same ability score, even in
the absence of any genuine award effect. As a consequence scholar-
ship receipt provides information beyond that given by the stu-
dent’s ability score. That is, there is some characteristic of the
treatment or control group (teachers’ evaluations of a student’s
potential to succeed as expressed in recommendation letters) that is
both associated with receipt of the treatment and associated with
the outcome of interest so as to lead to a false attribution of caus-
ality regarding treatment and outcome. Thus a comparison of
average outcomes of recipients and non-recipients, even if near the
cut-off, would not generally lead to correct inferences regarding an
average treatment effect.

On the other hand, a comparison of average outcomes for all
cases, irrespective of recipiency status, with scores just right and left
of the cut-off point could still be informative. To see how it is still
possible to exploit the discontinuity in the selection rule to identify
an average treatment effect of interest in the fuzzy RD case, notice
that

lim lim lim lim
x x

i
x x

i
x x

i i
x x

i iE y x E y x E t x E t x
↓ ↑ ↓ ↑

[ ]− [ ] = [ ]− [ ]( )
+

β β

llim lim .
x x

i
x x

iE u x E u x
↓ ↑

[ ]− [ ]( ) [3]

Considering first the case where the treatment effect is locally con-
stant (bi = b in a neighborhood around x̄), then under the same
local continuity assumption as in the sharp design, the first term
on the right-hand side in this equation equals b[limx↓x̄E [ti|x] -
limx↑x̄E[ti|x]] and the common treatment effect b is thus identified
by
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lim lim
lim lim

,x x x x

x x x x

E y x E y x
E t x E t x

↓ ↑

↓ ↑

[ ]− [ ]
[ ]− [ ]

[4]

where the denominator is always non-zero because of the known
discontinuity of E[t|x] at x̄.

In case of heterogenous treatment effects, as shown by HTV,
under the local continuity assumption, and a local conditional
independence assumption requiring ti to be independent of bi

conditional on x near x̄, the first parenthesized term on the right-
hand side of equation [3] equals limx↓x̄E[bi|x]limx↓x̄E[ti|x] -
limx↑x̄E[bi|x]limx↑x̄E[ti|x], implying that the ratio in [4] identifies
E[bi|x = x̄], the average treatment effect for cases with values of x
close to x̄.

If individuals self-select into treatment, or are selected for treat-
ment on the basis of expected gains from treatment, then the con-
ditional independence assumption may be violated. HTV also
consider the case where ti(x), individual ith treatment assignment
given any x, is a deterministic function that varies across individu-
als. They show that in this case, under a weaker local monotonicity
assumption similar to that made in Imbens and Angrist (1994), the
ratio defined in [4] will instead identify a local average treat-
ment effect (LATE) at the cut-off point, defined as: lime↓0

E[bi|ti(x̄ + e) - ti(x̄ - e) = 1, x = x̄]. This causal effect represents the
average treatment effect of the ‘compliers’, i.e. the subgroup of
individuals whose treatment status would switch from non-
recipient to recipient if their score x crossed the cut-off. The share of
this group in the population in the neighborhood of the cut-off is
equal to the denominator of [4].

As illustration, consider again the scholarship example. Assume
that awards are based not only on a student’s academic ability score
relative to a threshold but also on the student’s minority status, in
such a way that although all minority students receive the scholar-
ship, only those non-minority students with ability scores above the
cut-off do. In this case, if applicants’ minority status was unob-
served by the evaluator, the scholarship assignment rule would
correspond to that of a fuzzy design. The LATE would then apply
to the subgroup of students with academic ability scores close to the
cut-off for whom scholarship receipt depends on the position of
their ability score relative to the cut-off, which in this case would be
the subsample of non-minority students.

Although it is often the case that the identity of the so-called
compliers associated with an estimated LATE is unknown, in many
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RD applications the treatment assignment or selection rule is suf-
ficiently well known that the group can be precisely characterized.
In fact, in many situations the actual rule is deterministic and based
on predetermined variables and therefore representing a sharp RD
design, but needs to be treated as a fuzzy design because one or
more of the determinants are unobserved. The subgroup to which
the LATE applies can then usually be characterized in terms of
particular values or regions for the omitted variables [see the appli-
cations by van der Klaauw (2008) and Chen and van der Klaauw
(2008)].

Another case in which the ratio in [4] identifies an average treat-
ment effect for a well-defined subgroup of the population is one
where an eligibility rule divides the population into eligibles and
non-eligibles according to a sharp RD design, and where eligible
individuals self-select into treatment. As pointed out by Battistin
and Rettore (2008), under the local continuity assumption the
first parenthesized term on the right-hand side of [3] equals
limx↓x̄E[bi|ti = 1, x] · limx↓x̄E[ti|x], whereas the second term is zero
implying that the local continuity assumption alone is sufficient for
the ratio in [4] to identify E[bi|ti = 1, x = x̄], the average treatment
effect on the treated, for those near the cut-off. This result requires
no restrictions on the self-selection behavior of eligibles, and is
similar to results by Bloom (1984) and Angrist and Imbens (1991).

4. Parametric estimation

The identification results in the previous section indicate that
estimation of treatment effects in the case of an RD design requires
estimating boundary points of conditional expectation functions.
With a sufficiently large number of observations one could in prin-
ciple focus on units within a very small interval around the cut-off
point and simply compare average outcomes for units just left and
right of the discontinuity point. Increasing the interval around the
cut-off point is likely to produce a bias in the effect estimate, es-
pecially if the assignment variable was itself related to the outcome
variable conditional on treatment status. However, if one is willing to
make additional assumptions about this relationship, one could use
more observations and extrapolate from above and below the cut-off
point to what a tie-breaking randomized experiment would have
shown. This double extrapolation combined with the exploitation of
the ‘randomized experiment’ around the cut-off point represents the
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two main features by which RD analysis has been characterized in
the evaluation literature (e.g. Cook and Campbell, 1979).

In line with this idea of imposing additional assumptions, the
most common empirical strategy in the literature has been to adopt
parametric specifications for the conditional expectations func-
tions. To understand the implementation of this approach, it is
useful to consider the following alternative specification of the
outcome regression equation [1] in case of a sharp RD design:

y m x t ei i i i= ( ) + +δ , [5]

where ei = yi - E[yi|ti, xi], ti = 1{xi � x̄}, and m(x) = a + E[ui|x] +
(E[bi|x] - E[bi|x̄])1{x � x̄}. Note that under the local continuity
assumption m(x) will be a continuous function of x at x̄, with d, the
discontinuity in the average outcome at the cut-off, representing
E[bi|x̄], the average treatment effect at x̄. This specification there-
fore suggests that if the correct specification of m(x) were known,
and was included in the regression, we could consistently estimate
the treatment effect for the sharp RD design.

The concept of including a specification of m(x) in the regression
of y on t in order to correct for selection bias due to selection on
observables is known in the econometrics literature as the control
function approach (Heckman and Robb, 1985). Empirical research-
ers have tended to favor global polynomials or splines (piecewise
polynomials) where, even though continuous at the cut-off, m(x) is
specified as a different polynomial function of x on either side of
the cut-off (Trochim, 1984; van der Klaauw, 2002; McCrary, 2008).
Although traditionally in the RD evaluation literature this was
usually done using linear controls, allowing for non-linearities in
m(x) can be important, especially in cases where we suspect x and
y to be non-linearly related, such as when the outcome variable
is bounded, or when we have reason to expect this relationship to
change as a result of the program. In the scholarship award
example, the link between student performance and academic
ability may be enhanced or reduced after receiving a scholarship
that pays for all college expenses. In that scenario, we would expect
m(x) (even though continuous at x̄) to be non-differentiable at the
cut-off.

Note that although the control function approach allows us to
expand the estimation sample beyond the subset of observations
close to cut-off, it clearly still would require a much larger sample
of observations to provide the same precision as a randomized
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experiment. This is due to the collinearity between the terms in m(x)
and t in the regression equation, which reduces the independent
variation in treatment status across observations, and thus the pre-
cision of program impact estimates. Goldberger (1972) and Bloom
et al. (2005) consider two different versions of a constant treatment
effect model with a linear m(x) specification and compute that the
sample for an RD analysis must respectively be 2.75 and 4 times
that for a corresponding experiment to achieve the same degree of
precision.

Generally, in case of mis-assignment relative to the cut-off score,
the inclusion of m(x) in the regression equation [5] is no longer
adequate for avoiding biases due to group non-equivalence. A single
exception to this is the case of random mis-assignment considered by
Cain (1975), where the assignment error is independent of e given x.
Not only would inclusion of the correct control function in this case
produce a consistent estimate of the average treatment effect d near
the cut-off, it would actually be possible to non-parametrically
identify the average treatment effect over the region of common
support, by simply comparing average outcomes of the treated and
non-treated at any given value of the assignment variable x.

In other fuzzy RD design cases, estimation of a control-function-
augmented outcome equation [5] will generally not provide an esti-
mate of a meaningful treatment effect. As discussed by Barnow
et al. (1980), in case of a constant treatment effect, d will be esti-
mated with bias, where the bias will depend on the covariance of
t and e conditional on x and may be positive or negative. It is,
however, possible to solve this selection bias problem, by estimating
the same control-function-augmented outcome equation, but where
ti is now replaced by an estimate of the propensity score E [ti|xi].
Assuming local independence of ti and bi conditional on x, then in
a neighborhood of x̄,

y m x E t x wi i i i i= + [ ]+( ) ,δ [6]

where wi = yi - E[yi|xi] and m(x) = a + E[ui|x] + (E[bi|x] -
E[bi|x̄])E[t|x]. With the local continuity assumption again implying
that m(x) will be continuous at the cut-off, and with E [ti|xi] being
discontinuous at x̄, d in this regression will measure the ratio in
[4], which in this case equals the average local treatment effect
d = E [bi|x̄]. Similarly, d can be interpreted as a LATE if we replaced
the local independence assumption with the local monotonicity
condition of Imbens and Angrist (1994).
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This characterization logically leads to the two-stage procedure
adopted by van der Klaauw (2002), where in the first stage we
specify the treatment or selection rule in the fuzzy RD design as

t E t x v f x x x vi i i i i i i= [ ]+ = ( ) + ≥{ } +γ 1 , [7]

where f(·) is some function of x, which is continuous at x̄. By
specifying the functional form of f (or by estimating f semi- or
non-parametrically) we can estimate g, the discontinuity in the
propensity score function at x̄. In the second stage the control-
function-augmented outcome equation [6] is then estimated with
ti replaced by the first-stage estimate of E[ti|xi] = Pr[ti = 1|xi] as in
Maddala and Lee (1976). With correctly specified f(x) and m(x)
functions, this two-stage procedure yields a consistent estimate
of the treatment effect. The approach is similar in spirit to those
proposed earlier in the RD evaluation literature by Spiegelman
(1979) and Trochim and Spiegelman (1980).

It is worth pointing out that in case of a parametric approach, if we
assume the same functional form for m(x) and f(x), then the two-
stage estimation procedure described here will be equivalent to
two-stage least squares (in case of linear-in-parameter specifications)
with 1{xi � x̄} and the terms in m(x) serving as instruments. Because
of the popularity of this particular parametrization, the RD
approach is often interpreted as being equivalent to an Instrumental
Variable approach, as it implicitly imposes an exclusion restriction
by excluding 1{xi � x̄} as a variable in the outcome equation.

5. Semi-parametric estimation

In case of the RD design, valid parametric inference requires a
correct specification both of the control function m(x) and of f(x) in
the treatment equation. Although our identification results relied
on a local continuity assumption, the parametric estimation
approach imposes global continuity and frequently also global dif-
ferentiability (except perhaps at the discontinuity point) of the con-
ditional expectation functions. Even though this permits us to use
all data points including those far from the cut-off, the choice of
functional form and of the order of the polynomial in polynomial
specifications is delicate.

One way to reduce the potential for mis-specification bias is to
continue assuming global continuity and differentiability but to
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estimate the functions m(x) and f(x) semi-parametrically. van der
Klaauw (2002) proposed the use of a power series approximation
for estimating these functions as η j

j
j

J
x⋅

=∑ 1
, where the number of

power functions, J, is estimated from the data by generalized cross-
validation as in Newey et al. (1990). In this case, the correct stan-
dard errors would generally be larger than conventional standard
errors reflecting the fact that the chosen polynomial specification is
an approximation.

More recently proposed semi-parametric estimation methods rely
on even less restrictive smoothness conditions away from the discon-
tinuity to estimate the size of the discontinuities in the conditional
expectation functions E[y|x] and E[t|x]. Estimation of the limits
limx↓x̄E[z|x] and limx↑x̄E[z|x] in [4] in these cases is based mainly on
data in a neighborhood on either side of the cut-off point. Asymp-
totically this neighborhood needs to shrink, as with usual non-
parametric estimation, implying that we should expect a slower than
parametric rate of convergence in estimating treatment impacts.

HTV considered the use of kernel methods, where the left- and
right-hand side limits of the conditional expectations E[z|x] that
appear in [4] are estimated using Nadaraya–Watson estimators
defined as Sikh(x̄ - xi)ziwi/Sikh(x̄ - xi)wi and Sikh(x̄ - xi)zi(1 - wi)/

Sikh(x̄ - xi)(1 - wi) where wi = 1{x � x̄}, k
h

k hh ⋅( ) = ⋅( )1 , k(·) is a

kernel function, and h denotes a bandwidth that controls the size of
the local neighborhood to average over. Each term represents a
weighted average of z for data contained in a small neighborhood
left or right of the cut-off, with the weights depending on the dis-
tance from the cut-off (x̄ - x) as well as the bandwidth and kernel
function. In case of a one-sided uniform kernel this leads to the
‘local Wald’ estimator of HTV:

y w w y w w

t w w t w
i ii S ii S i ii S ii S

i ii S ii S i i

∈ ∈ ∈ ∈

∈ ∈

∑ ∑ ∑ ∑
∑ ∑

− −( ) −( )
− −

1 1

1(( ) −( )
∈ ∈∑ ∑i S ii S

w1
[8]

where S denotes the subsample around the cut-off point defined by
x̄ - h � xi � x̄ + h. This estimator is numerically equivalent to a
Wald estimator applied to a discontinuity sample S, where ti is
instrumented by wi.

This kernel-based estimator, though consistent, suffers from the
same poor asymptotic bias behavior that many non-parametric
conditional expectation estimators have at boundary points. In case
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of a positive slope of m(x) near x̄, the average outcome for obser-
vations just right of the cut-off will generally provide an upward
biased estimate of limx↓x̄E [y|x] whereas the average outcome of
observations just to the left of the cut-off would provide a down-
ward biased estimate of limx↑x̄E [y|x]. Therefore, in the case of a
sharp design, where the treatment effect is estimated by taking the
difference between these two averages, this generates a positive
finite sample bias, implying that the bandwidth needs to shrink at a
very fast rate, leading to a slow rate of convergence.

An alternative approach considered by HTV and Porter (2003) is
to estimate the limits in [4] using local polynomial regression (Fan,
1992). Such estimators are known for their superior boundary
behavior (Fan and Gijbels, 1996). Although HTV focused on the
linear case, Porter also considered higher-order local polynomial
estimators. The order p local polynomial estimator of the right-
hand side limit of a conditional expectation E[z|x] is defined as the
value of δ̂ , which solves the minimization problem

min
, , ,δ

δ
b b

h i i i i p i
p

i

n

p n
k x x w z b x x b x x

1

1
1

2

1
�

�−( ) − − −( ) − − −( )⎡⎣ ⎤⎦
=
∑∑ .

The estimator of the left-hand side limit represents the value of d,
which minimizes the same criterion but with wi replaced by 1 - wi.
HTV and Porter show that by accounting for the polynomial type
behavior of the conditional expectation near the boundary, the bias
in the boundary estimate becomes of much lower order compared
with that in kernel estimation. Moreover, as shown by Porter, RD
estimators based on local polynomial regression achieve the
optimal rate of convergence.

Another estimator that, under certain conditions, attains the
optimal convergence rate is based on partially linear model estima-
tion. This estimator, which was proposed by Porter (2003) and based
on Robinson’s (1988) partially linear model estimator, imposes
additional smoothness on the conditional expectation functions by
assuming that m(x) in equation [5] is not only continuous, but also
continuously differentiable at x̄. The partially linear model estimator
for estimating d in equation [5] can be found by minimizing the
average squared deviation between (y - dw) and the non-parametric
estimate of m(x). That is, it is the value of d that solves

min
δ

δ δy w r y wi i j
i

j j
j
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where r k x x k x xj
i

h i j h i ll

n= −( ) −( )
=∑ 1

. The RD estimate in case of a
fuzzy design can then be computed by using the same approach to
estimate the discontinuity in E[t|x], followed by taking the ratio of
the two estimated discontinuities.

Unlike the local polynomial and kernel estimators, which are
based on weighted averages calculated with data belonging to only
one side of the discontinuity, the partial linear estimator at each
value of x uses data from both sides of the cut-off. Thus in esti-
mating m(x) near x̄, positive weight is given to data points from both
sides of the threshold. This is in fact the reason for why this estimator
does not suffer the same poor bias behavior as the estimator based on
one-sided kernel estimation, because it exploits the fact that the
biases at either side of the discontinuity are comparable and thus in
a sense can be cancelled out. Porter shows that the partially linear
estimator achieves the same order of bias reduction as the local
polynomial estimator, and similarly achieves the optimal conver-
gence rate, as long as the additional smoothness condition on the
derivatives at the discontinuity point hold. The later condition,
however, may not be desirable for analysing heterogeneous treat-
ment effect cases in which we suspect an interaction effect between
treatment receipt and the assignment variable that would produce a
jump in the derivative of m(x) at x̄ (as illustrated in the earlier
scholarship example). For this reason, the local or piecewise poly-
nomial estimators can be expected to be more robust.

Finally, the results derived by HTV and Porter regarding the
asymptotic properties of the local polynomial regression and par-
tially linear model estimators rely on a known degree of smoothness
of the conditional expectations functions m(x) and f(x). As pointed
out by Sun (2005), if the degree of smoothness is unknown and
incorrectly chosen, the estimates obtained with these methods may
actually inflate, rather than reduce the bias due to the boundary
problem. To avoid this problem, Sun proposes the use of an adap-
tive estimator, which first estimates the degree of smoothness in the
data prior to implementing either estimator.

6. Sensitivity analysis and validity tests

Given the common practice of researchers to estimate RD treat-
ment effects parametrically, and in light of the minimal assumptions
required for identification, it is important to supplement any
parametric analysis with several robustness checks. First, it is
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informative to start an RD analysis with a graphical portrayal of
the data to show the presence of a discontinuity in the probability of
assignment. An effective way of doing this is to plot averages for
equally sized non-overlapping bins, on either side of the cut-off such
that no histogram bin includes points to both the left and right of
the point of discontinuity (see, for example, DiNardo and Lee,
2004; Lee et al., 2004; van der Klaauw, 2008; Lemieux and Milligan,
2008). A similar analysis for the outcome variable would then
provide a first indication of the existence of a non-zero treatment
effect, if the plot reveals a similar discontinuity at the same cut-off
in the average outcome measure.

Second, it is important to investigate how sensitive the para-
metric estimates are to alternative and more flexible parametric
assumptions, for example, by adding higher-order terms in polyno-
mial specifications, and by exploring polynomial splines (with sepa-
rate polynomials on both sides of the discontinuity). Third, and
close in spirit to the idea of local identification, is to examine the
robustness of the parametric results by restricting the sample to a
subset of observations more closely clustered around the cut-off. A
linear control function is likely to provide a reasonable approxima-
tion of the true functional form within a small neighborhood of
the cut-off. Alternatively one could report easy-to-calculate ‘local
Wald’ estimates for varying bandwidth sizes (van der Klaauw,
2002, 2008). By taking increasingly narrow windows around the
discontinuity point, the influence of data points further away from
the discontinuity is reduced and will generally lead to a reduction in
the risk of a mis-specification bias, but at the obvious cost of a loss
in efficiency.

The internal validity of the RD approach relies on the local
continuity of conditional expectations functions around the discon-
tinuity point. Continuity implies that the average potential out-
comes for individuals marginally below the threshold will equal
those for the group just above the threshold. For each specific
application of the design, it is important to consider the potential
for economic behavior to invalidate the local continuity assump-
tion. If agents exercise control over their values of the assignment
variable, or if administrators can strategically choose what assign-
ment variable to use or which cut-off point to pick then compara-
bility near the cut-off may be violated. Both types of behavior may
lead to sorting of individuals around the cut-off point, where those
below the cut-off may differ on average from those just above the
cut-off. Continuity will also be violated in the presence of other
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programs that use a discontinuous assignment rule with the exact
same assignment variable and cut-off score.

To judge the potential for behavioral effects that could lead to
violation of the continuity assumption, it is important to analyse
agents’ ability and incentive to affect their values of the assignment
variable. If the assignment rule and selection mechanism are well
understood, and treatment is considered beneficial, then it would be
plausible that agents would engage in manipulation of the assign-
ment variable in order to obtain desirable treatment assignments.
Such sorting is less likely if the existence of the assignment rule
is not known and hard to uncover, if the location of the cut-off
is unknown or uncertain, if the assignment variable cannot be
manipulated or if there is insufficient time for agents to do so.

Similarly, it is important to analyse the extent to which adminis-
trators can define the assignment variable and cut-off score, as well
as the information that is available at the time these variables are
chosen. If the choice is made based on the realized distribution of
the assignment variable, it may in certain cases be optimal for
administrators to set the cut-off by picking a randomly realized
‘break point’ in the data where by chance the average characteristics
of individuals change. Existing rules or laws often predetermine the
location of the cut-off score, restricting the administrator’s scope
for strategic behavior. For example, a rule may specify that the
cut-off be computed as the average of the assignment variable in
a well-defined population.

Although in many cases it will be likely that agents or adminis-
trators (or both) will exercise some control over the value of the
assignment variable or position of the cut-off, this does not neces-
sarily imply that the continuity assumptions will be violated. Lee
(2008) analyses the conditions under which an ability to manipulate
the assignment variable may invalidate the RD identification
assumptions. He shows in the context of a sharp RD design that as
long as individuals do not have perfect control over the position of
the assignment variable relative to the cut-off score, the continuity
assumption will be satisfied. More precisely, as long as the score on
which treatment is based contains an independent random chance
element, so that conditional on the individual’s choices and char-
acteristics the density of the realized score for each individual is
continuous, it will imply local continuity of average potential out-
comes at the discontinuity point. Moreover, this model generates
variation in the treatment status that resembles that of randomized
treatment assignment within a neighborhood of the cut-off. That is,
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the model implies that the local conditional independence assump-
tion will be satisfied, such that close to this threshold, all variables
determined prior to assignment (both observable and unobserv-
able) will be independent given treatment status.

Although an ability to manipulate the value of the assignment
variable will therefore not necessarily invalidate the RD approach,
clearly one would expect it to affect the composition of the sample
around the discontinuity point: the program may cause different
subgroups to locate near the cut-off than would have been the case if
the program rules were unknown or if agents had no control over
their value of the assignment variable. This in turn affects the
interpretation of the estimated treatment effect. As pointed out by
Lee (2008) the RD approach in such cases would identify a weighted
average treatment effect, with individuals whose underlying charac-
teristics or actions that make them more likely to obtain a draw of the
score near the cut-off receiving more weight than those who are
unlikely to obtain such a draw. Furthermore, the counterfactual
would not correspond to a world without the program, but rather
one with a program but where the individual does not receive
treatment due to having an assignment score just below the cut-off.
Thus the RD approach would estimate a causal effect for a subgroup
of the population that may be program dependent, an effect that
would nevertheless continue to inform the policy-maker on the
consequences of small changes in the cut-off score.

These results indicate that for sorting to undermine the causal
interpretation of the RD approach, agents need to be able to sort
precisely around the assignment cut-off. Although in many cases
the extent of agents’ control (and thus the local continuity assump-
tion) is fundamentally untestable, a number of additional validity
tests have been developed to bolster the credibility of the RD
design. A first validity test is to look for direct evidence of precise
sorting around the assignment cut-off by searching for a sharp
break in the distribution of the assignment variable at the cut-off.
If individuals cannot exercise precise control over the assignment
score or do not know the cut-off, then the distribution should be
smooth close to the cut-off value (Chen and van der Klaauw, 2008;
Lee, 2008; Lemieux and Milligan, 2008). If they can, we would
expect to find a jump in this distribution at the discontinuity point.
Evidence of such a jump would then be suggestive of a violation
of the RD assumptions.

McCrary (2008) developed a local linear density estimator to test
for a discontinuity in the density at a given point. More informally,
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one could plot the frequency of the assignment variable for equally
sized non-overlapping bins on either side of the cut-off. This
approach was used by McEwan and Urquiola (2005) to investigate
the applicability of the RD approach for evaluating the impact of
class size on student outcomes. The discontinuity in their analysis
arises due to a law in Chile mandating a maximum class size of 45
students, which generates drops in the average class size level as a
function of grade-specific enrollment at values 45, 90, 135, etc. A
similar maximum class size rule was exploited by Angrist and
Lavy (1999). McEwan and Urquiola present histograms that reveal
spikes in the distribution of school enrollment, with sharply higher
numbers of schools at or just below these enrollment cut-off levels,
which is consistent with precise sorting of schools around these
levels. This seems plausible in that schools appear to be able to
informally discourage some students from attending.

The absence of a discontinuity in the density of the assignment
variable is neither a necessary nor a sufficient condition for valid
inference. As pointed out by McCrary (2008) a density test will only
be informative if manipulation is monotonic, i.e. if the program
induces agents to change the assignment variable in one direction
only. Second, such manipulation or gaming may be for reasons that
are unrelated to potential outcomes, such as a desire to avoid
administrative hassle involved with treatment receipt, while leaving
continuity of expected potential outcome functions intact. However
in most cases where the program rules are well known and individu-
als have direct control over the assignment score, and where one
would not expect to find a discontinuity in the density if the
program had no effect, finding such a discontinuity would compro-
mise the validity of the RD approach.

A second validity test, which has been frequently applied to
analyse the credibility of the RD approach, is to search for evidence
that individuals on either side of the cut-off are observationally
similar. If continuity assumptions are correct then we would expect
both groups of individuals to have similar average observed and
unobserved characteristics. To visually test for an imbalance of
observed covariates at the cut-off we could for each observable
characteristic plot its average for non-overlapping bins on either
side of the cut-off. Alternatively, we can test whether the relation-
ship between the assignment variable and any baseline covariates
is smooth in the vicinity of the discontinuity point by repeating the
RD analysis treating the characteristics as outcome variables (van
der Klaauw, 2008). In their analysis of class size effects, McEwan
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and Urquiola (2005) found sharp breaks in the distribution of
student characteristics and family income at the discontinuity
points. For example, private school students in schools just to the
right of these cut-offs (those in small classes) tend to have higher
average family income than those just to the left (those in large
ones). Thus, the treatment of smaller classes is confounded with a
relative improvement in observed student socio-economic status
that is associated with the earlier finding of sorting close to the
cut-offs. In a similar vein, one can test the local independence result
implied by the behavioral ‘imperfect control’ model of Lee. This
condition implies that in a neighborhood around the cut-off all
variables determined prior to assignment should be independent
of treatment status. Thus characteristics of recipients and non-
recipients should also be comparable in this case.

Although a lack of significant jumps in observable characteristics
along the discontinuity provides evidence consistent with the valid-
ity of the RD design, this does not necessarily imply that no such
discontinuity exists in unobservables. At the same time, finding
evidence of a discontinuity does not necessarily imply that the RD
identification conditions are violated. Finding such a discontinuity
would only be relevant if the observed characteristic is actually
related to the outcome of interest. This suggests a third test, in
which we assess whether RD estimates are sensitive to inclusion of
observed characteristics as controls. This test can be interpreted as
a test for an imbalance in relevant characteristics (van der Klaauw,
2002, 2008). If the local continuity assumptions are satisfied then
the only possible gain from controlling for observables in para-
metric or semi-parametric estimation of treatment effects in an RD
design would come from a reduction in sampling variability (assum-
ing they have explanatory power). However, if including these con-
trols lead to significant changes in estimates, this would suggest that
these continuity assumptions may be violated. An alternative way
to test the sensitivity of RD estimates to the inclusion of individual
covariates, proposed by Lee (2008), is to first regress the outcome
variable on a vector of individual characteristics and then to repeat
the RD analysis using the residuals as outcome variable, instead of
the outcome variable itself.

In some applications data are available from a baseline period in
which the program did not yet exist, or for a group of individuals
that was not eligible for treatment. In such a case the credibility
of the design can be significantly enhanced by repeating the RD
analysis with such data. Finding a zero treatment effect in such
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a falsification test would suggest that a non-zero post-program
effect was not an artifact of the specific RD model specification or
estimation approach chosen. It also could be used to rule out the
possibility that the estimated effects are caused by another program
using the same cut-off and assignment variable.

An additional specification test for a spurious relationship
between treatment and outcome at a cut-off point was proposed by
Kane (2003). His test analyses whether the actual cut-off fits the
data better than other nearby cut-offs. To do so, Kane estimated
his model for a set of alternative cut-off values, and plotted the
log likelihood value associated with each. A clear spike in the log
likelihood at the actual relative to alternative cut-off values could
help allay concerns that the found (local) relationship was spurious.

Finally, it is worth pointing out that although evidence of sorting
would often imply that the RD approach would not estimate a
meaningful treatment effect, in many cases the finding of a non-zero
effect estimate can nevertheless be seen as evidence that a treatment
matters. For example, in analysing the impact in the USA of an
anti-discrimination or equal employment opportunity law affecting
firms with 15 or more workers, Hahn et al. (1999) found a discon-
tinuity in the percentage of minorities employed in small firms, with
firms with 13 and 14 workers having a significantly lower share of
minority workers than firms with 15 or 16 workers. As firms directly
choose their number of employees, sorting represents a legitimate
concern to this RD application. Although the results in Hahn et al.
did not find evidence of heaping at total employment values just
below 15, it is difficult to rule out the possibility that the significant
jump in the share of minority workers at 15 was the result of
strategic employment decisions in order to avoid the risk of sanc-
tions for violating the law. Although this would render the RD
estimate of the law’s impact biased, the presence of a non-zero jump
nevertheless provides credible evidence that the law actually
affected firm hiring and lay-off decisions.

7. Extensions

The analysis of the RD design in this paper has focused on the
binary treatment case with a selection rule containing a single dis-
continuity at a known cut-off in a continuously distributed variable.
The case of a binary treatment and single known cut-off can be
readily extended to one where there are multiple treatment dose
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levels and multiple cut-offs or ‘cut-off ranges’ within which the
treatment dose varies continuously.

With multiple treatment dose levels for t, equation [1] can be
interpreted as describing the average potential outcomes across
individuals under alternative treatment dose assignments. In case of
a sharp design, the impact defined in [4] at a discontinuity point can
then be interpreted as the average impact of a change in treatment
dose equal to the jump at the discontinuity point, for individuals
near the cut-off. With a fuzzy design, ti is again a random variable
given x, but the conditional mean E[ti|x] is known to be discontinu-
ous at a given cut-off. Considering the more general case where
treatment effects may be non-linear, with bi in [1] replaced by bi(ti),
the results of Angrist and Imbens (1995) can be extended to show
that under the same continuity and local monotonicity assumptions
discussed earlier, [4] identifies a weighted average causal response
across the different treatment dose levels observed in the data, for
those whose treatment dose changes discontinuously at the cut-off
value (see van der Klaauw, 2002).

When there are several discontinuity points, one can identify
treatment effects over a wider range of the support of x. As the
number of points approaches infinity, a discontinuity design
approximates the conditions of a randomized experiment. If treat-
ment effects were locally constant, say within quintiles of x, then an
RD design with a fixed number of discontinuity points would allow
identification of the range of treatment impacts. Multiple disconti-
nuity points also allow a test of the common effect assumption
(see HTV).

Porter (2003) considered the case where the treatment assignment
or selection mechanism is known to have a single discontinuity, but
where the exact location of the discontinuity point is unknown. He
proposes the use of methods developed for the estimation of struc-
tural breaks in time-series data to estimate the point in the distri-
bution where the discontinuity was most likely to have taken place.
One can then proceed with the RD analysis as before, treating the
estimated cut-off as the known true one. Importantly, Porter points
out that estimators of the discontinuity point have a faster conver-
gence rate than the estimators of the discontinuity size and so do
not affect the limiting distribution results derived for the known
cut-off case.

Finally, a potentially important practical issue that arises in
empirical applications of the RD design is that rather than being
continuous, the assignment or selection variable is often discrete or
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only reported in coarse intervals. As pointed out by Lee and Card
(2008), in such a case it is no longer possible to compare observa-
tions just above or just below the cut-off because of the inevitable
gap between discrete values. Even if the number of observations
goes to infinity, we will never have any observations just below the
cut-off to estimate the left-side limits in [4]. Therefore, the condi-
tions presented earlier are no longer sufficient for the identification
of a causal effect. Additional assumptions are required to allow
interpolation and extrapolation between discrete values. Lee and
Card discuss such parametric assumptions as well as inference in
this case.
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